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Convex optimization

Consider an optimization problem:

min
x∈C

f(x)

i.e., “minimize a function f subject to x being in the set C”.

We call the above a convex optimization problem if:

I The set C is a convex set.

I The function f is a convex function.

Key property: All local minima are global minima.
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Convex sets

Convex set: a set C is convex if, for any x1, x2 ∈ C and any 0 ≤ θ ≤ 1, it contains
the line segment between x1 and x2 in C

θx1 + (1− θ)x2 ∈ C .
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Convex sets
Convex combination of x1, ..., xk: any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with θ1 + θ2 + ...+ θk = 1 and θi ≥ 0.

Convex hull of a set C: set of all convex combinations of points in S

{θ1x1 + ...+ θkxk | xi ∈ C, θ1 + ...+ θk = 1, θi ≥ 0} .
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Cones

Cone: if for every x ∈ C and θ ≥ 0 we have

θx ∈ C .

Conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0.
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Cones

Convex cone: a set C is a convex cone if it is convex and a cone; for any x1, x2 ∈ C
and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C .
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Cones

Conic hull of a set C: the set of all conic combinations of points in C

{θ1x1 + ...+ θkxk | xi ∈ C, θi ≥ 0} .
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Cones

Polar cone of a set C: the set of all points that make ≥ 90◦ with any point in C

{y | 〈y, x〉 ≤ 0, ∀x ∈ C} .

Tangent cone: the closure of all directions you are allowed to move in within C.

I If x is an interior to C then the tangent cone is Rn.

Normal cone: the polar of tangent cone.

I It will be used to characterize optimality conditions later.
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Examples of convex sets

Some simple ones:

I empty set

I single point

I line and line segment

I subspace and the whole space
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Examples of convex sets

Hyperplane:
H = {x ∈ Rn : a>x = b}

where a 6= 0 and b ∈ R.
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Examples of convex sets

Half space:

H+ = {x ∈ Rn : a>x ≥ b} or H− = {x ∈ Rn : a>x ≤ b} .
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Examples of convex sets

Norm ball with center xc and radius r:

{x : ‖x− xc‖p ≤ r} .

I Examples of different 1 ≤ p ≤ ∞.

I Prove Euclidean balls (i.e., p = 2) are convex.
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Examples of convex sets

Norm cone:
{(x, t) : ‖x‖p ≤ t}
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Examples of convex sets

Polyhedron: the solution set of a finite number of linear equalities and inequalities

P = {x : a>i x ≤ bi, i = 1, ...,m, c>j x = dj , j = 1, ..., p} .
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Convexity preserving operations

Intersections of convex sets are convex.
Let Ci, i ∈ I be convex sets, where I is a index set. Then C = ∩i∈ICi is a convex set.

Example: linear program with linear inequalities constraints Ax ≤ b.
I Each constraint a>i x ≤ bi defines a half-space.

I Half-spaces are convex sets.

I So the set of x satisfying Ax ≤ b is the intersection of convex sets.

Other operations that preserve convexity

I Affine images and inverse images (e.g., scaling and translation)

I Perspective images and inverse images (e.g., pin-hole camera)

I Linear-fractional images and inverse images (e.g., projective transformation)

15 / 31



Properties of convex sets

Separating hyperplane theorem

If C and D are nonempty disjoint convex sets, there exist a 6= 0, b such that a>x ≤ b
for x ∈ C and a>x ≥ b for x ∈ D.
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Properties of convex sets

Supporting hyperplane theorem

If C is convex, then there exist a supporting hyperplane at every boundary point of C.
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Convex functions

C0 definition of convex functions:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) , ∀x, y ∈ Rn and 0 ≤ t ≤ 1 .

I A C0 function is convex iff the function is below its chord between any two points.
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Convex functions

C1 definition of convex functions:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 , ∀x, y ∈ Rn .

I A C1 function is convex iff the function is above its tangent planes at any point.

19 / 31



Convex functions

C2 definition of convex functions:

∇2f(x) � 0 , ∀x ∈ Rn .

I A C2 function is convex iff it is curved upwards everywhere.
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Convex functions

Show that the C2 definition is equivalent to the C1 definition.

First, let’s recall the fundamental theorem of calculus:∫ 1

0
F ′(t)dt = F (1)− F (0)

Now consider the following:∫ 1

0
(x− y)>∇2f(tx+ (1− t)y)dt =

∫ 1

0

d

dt

(
∇f(tx+ (1− t)y)

)
dt = ∇f(x)−∇f(y)

21 / 31



Convex functions

Multiplying by x− y both sides gives∫ 1

0
(x− y)>∇2f(tx+ (1− t)y)(x− y)dt = 〈∇f(x)−∇f(y), x− y〉

By applying C2 definition, we obtain

〈∇f(x)−∇f(y), x− y〉 ≥ 0

I It’s called function is monotone; i.e., C2 function is monotone.

I You can also show that C1 function is monotone.
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Convex functions

Next, consider the following:∫ 1

0
∇f((y − x)t+ x)>(y − x)dt =

∫ 1

0

d

dt

(
f((y − x)t+ x)

)
dt = f(y)− f(x)

Rearranging it gives

f(y) = f(x) +

∫ 1

0
∇f((y − x)t+ x)>(y − x)dt

We want to relate this to the C1 definition, while using monotonicity.
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Convex functions

From the monotonicity, we can show that the integrand is smallest at t = 0, i.e.,

〈∇f((y − x)t+ x)−∇f(x), (y − x)t+ x− x〉 ≥ 0

〈∇f((y − x)t+ x)−∇f(x), y − x〉 ≥ 0

Therefore, we can say
f(y) ≥ f(x) + 〈∇f(x), y − x〉

I If function is monotone, it’s convex.

I More rigorous proofs exist.
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Convex functions: examples

Example: For f(x) = x>Qx where Q is postive semidefinite, show f is convex using
definitions of convex functions.
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Convex functions: examples

Example: Show p-norm is convex.
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Convex functions: examples

Example: Show f(x, y) = x2/y is convex.
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Convexity preserving operations

Nonnegative weighted sum

If α, β ≥ 0 and f1, f2 convex, αf1 + βf2 is convex.

Pointwise maximum
If f1, ..., fm are convex, max{f1(x), ..., fm(x)} is convex.

Composition with affine map

If f is convex, f(Ax+ b) is convex.

Partial minimization
If g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈C g(x, y) is convex.
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Convex functions

More on convex functions..

I Notice from C1 definition that ∇f(x) = 0 implies f(y) ≥ f(x) for all y, so x is a
global minimizer; this further explains why least squares can be solved by setting
the derivative equal to zero.

I Strictly-convex function have at most one global minimum; w and v can’t both be
global minima if w 6= v; it would imply convex combinations u of w and v would
have f(u) below the global minimum.
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Convex functions

For strictly convex objective f there can be at most one global optimum.

Proof:

1. Suppose x∗ is a local minimum and also there exists another local minimum x#

(6= x∗).

2. Since f is convex (because it is strictly convex), f(x∗) and f(x#) are both global
minima, and f(x∗) = f(x#).

3. The C0 definition for y = θx∗ + (1− θ)x#, i.e.,

f(y) < θf(x∗) + (1− θ)f(x#) = θf(x∗) + (1− θ)f(x∗) = f(x∗)

contradicts that x∗ is a global minimum.

4. This means that for x# to be a local minimum, it must be that x# = x∗.
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Any questions?
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