Convex Optimization

Part 1: Convex sets and functions

Namhoon Lee

POSTECH
14 Sep 2022

Convex optimization

Consider an optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

i.e., "minimize a function f subject to x being in the set \mathbb{C} ".

We call the above a convex optimization problem if:

- The set \mathbb{C} is a convex set.
- The function f is a convex function.

Key property: All local minima are global minima.

Convex sets

Convex set: a set \mathbb{C} is convex if, for any $x_{1}, x_{2} \in \mathbb{C}$ and any $0 \leq \theta \leq 1$, it contains the line segment between x_{1} and x_{2} in \mathbb{C}

$$
\theta x_{1}+(1-\theta) x_{2} \in \mathbb{C}
$$

Convex sets

Convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}
$$

with $\theta_{1}+\theta_{2}+\ldots+\theta_{k}=1$ and $\theta_{i} \geq 0$.
Convex hull of a set \mathbb{C} : set of all convex combinations of points in \mathbb{S}

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{i} \in \mathbb{C}, \theta_{1}+\ldots+\theta_{k}=1, \theta_{i} \geq 0\right\}
$$

Cones

Cone: if for every $x \in \mathbb{C}$ and $\theta \geq 0$ we have

$$
\theta x \in \mathbb{C}
$$

Conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\theta_{1} \geq 0, \theta_{2} \geq 0$.

Cones

Convex cone: a set \mathbb{C} is a convex cone if it is convex and a cone; for any $x_{1}, x_{2} \in \mathbb{C}$ and $\theta_{1}, \theta_{2} \geq 0$, we have

$$
\theta_{1} x_{1}+\theta_{2} x_{2} \in \mathbb{C}
$$

Cones

Conic hull of a set \mathbb{C} : the set of all conic combinations of points in \mathbb{C}

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{i} \in \mathbb{C}, \theta_{i} \geq 0\right\}
$$

Cones

Polar cone of a set \mathbb{C} : the set of all points that make $\geq 90^{\circ}$ with any point in \mathbb{C}

$$
\{y \mid\langle y, x\rangle \leq 0, \forall x \in \mathbb{C}\}
$$

Tangent cone: the closure of all directions you are allowed to move in within \mathbb{C}.

- If x is an interior to \mathbb{C} then the tangent cone is \mathbb{R}^{n}.

Normal cone: the polar of tangent cone.

- It will be used to characterize optimality conditions later.

Examples of convex sets

Some simple ones:

- empty set
- single point
- line and line segment
subspace and the whole space

Examples of convex sets

Hyperplane:

$$
\mathbb{H}=\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\}
$$

where $a \neq 0$ and $b \in \mathbb{R}$.

Examples of convex sets

Half space:

$$
\mathbb{H}^{+}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \geq b\right\} \quad \text { or } \quad \mathbb{H}^{-}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq b\right\}
$$

Examples of convex sets

Norm ball with center x_{c} and radius r :

$$
\left\{x:\left\|x-x_{c}\right\|_{p} \leq r\right\}
$$

- Examples of different $1 \leq p \leq \infty$.
- Prove Euclidean balls (i.e., $p=2$) are convex.

Examples of convex sets

Norm cone:

$$
\left\{(x, t):\|x\|_{p} \leq t\right\}
$$

Examples of convex sets

Polyhedron: the solution set of a finite number of linear equalities and inequalities

$$
\mathbb{P}=\left\{x: a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m, c_{j}^{\top} x=d_{j}, j=1, \ldots, p\right\} .
$$

Convexity preserving operations

Intersections of convex sets are convex.

Let $C_{i}, i \in \mathbb{I}$ be convex sets, where \mathbb{I} is a index set. Then $C=\cap_{i \in \mathbb{I}} C_{i}$ is a convex set.

Example: linear program with linear inequalities constraints $A x \leq b$.

- Each constraint $a_{i}^{\top} x \leq b_{i}$ defines a half-space.
- Half-spaces are convex sets.
- So the set of x satisfying $A x \leq b$ is the intersection of convex sets.

Other operations that preserve convexity

- Affine images and inverse images (e.g., scaling and translation)
- Perspective images and inverse images (e.g., pin-hole camera)
- Linear-fractional images and inverse images (e.g., projective transformation)

Properties of convex sets

Separating hyperplane theorem

If C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ such that $a^{\top} x \leq b$ for $x \in C$ and $a^{\top} x \geq b$ for $x \in D$.

Properties of convex sets

Supporting hyperplane theorem
If C is convex, then there exist a supporting hyperplane at every boundary point of C.

Convex functions

C^{0} definition of convex functions:

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y), \quad \forall x, y \in \mathbb{R}^{n} \text { and } 0 \leq t \leq 1
$$

- A C^{0} function is convex iff the function is below its chord between any two points.

Convex functions

C^{1} definition of convex functions:

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \quad \forall x, y \in \mathbb{R}^{n}
$$

- A C^{1} function is convex iff the function is above its tangent planes at any point.

Convex functions

C^{2} definition of convex functions:

$$
\nabla^{2} f(x) \succeq 0, \quad \forall x \in \mathbb{R}^{n}
$$

- A C^{2} function is convex iff it is curved upwards everywhere.

Convex functions

Show that the C^{2} definition is equivalent to the C^{1} definition.
First, let's recall the fundamental theorem of calculus:

$$
\int_{0}^{1} F^{\prime}(t) d t=F(1)-F(0)
$$

Now consider the following:

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y) d t=\int_{0}^{1} \frac{d}{d t}(\nabla f(t x+(1-t) y)) d t=\nabla f(x)-\nabla f(y)
$$

Convex functions

Multiplying by $x-y$ both sides gives

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y)(x-y) d t=\langle\nabla f(x)-\nabla f(y), x-y\rangle
$$

By applying C^{2} definition, we obtain

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

- It's called function is monotone; i.e., C^{2} function is monotone.
- You can also show that C^{1} function is monotone.

Convex functions

Next, consider the following:

$$
\int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t=\int_{0}^{1} \frac{d}{d t}(f((y-x) t+x)) d t=f(y)-f(x)
$$

Rearranging it gives

$$
f(y)=f(x)+\int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t
$$

We want to relate this to the C^{1} definition, while using monotonicity.

Convex functions

From the monotonicity, we can show that the integrand is smallest at $t=0$, i.e.,

$$
\begin{aligned}
\langle\nabla f((y-x) t+x)-\nabla f(x),(y-x) t+x-x\rangle & \geq 0 \\
\langle\nabla f((y-x) t+x)-\nabla f(x), y-x\rangle & \geq 0
\end{aligned}
$$

Therefore, we can say

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

- If function is monotone, it's convex.
- More rigorous proofs exist.

Convex functions: examples

Example: For $f(x)=x^{\top} Q x$ where Q is postive semidefinite, show f is convex using definitions of convex functions.

Convex functions: examples

Example: Show p-norm is convex.

Convex functions: examples

Example: Show $f(x, y)=x^{2} / y$ is convex.

Convexity preserving operations

Nonnegative weighted sum
If $\alpha, \beta \geq 0$ and f_{1}, f_{2} convex, $\alpha f_{1}+\beta f_{2}$ is convex.
Pointwise maximum
If f_{1}, \ldots, f_{m} are convex, $\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex.
Composition with affine map
If f is convex, $f(A x+b)$ is convex.
Partial minimization
If $g(x, y)$ is convex in x, y, and \mathbb{C} is convex, then $f(x)=\min _{y \in \mathbb{C}} g(x, y)$ is convex.

Convex functions

More on convex functions..

- Notice from C^{1} definition that $\nabla f(x)=0$ implies $f(y) \geq f(x)$ for all y, so x is a global minimizer; this further explains why least squares can be solved by setting the derivative equal to zero.
- Strictly-convex function have at most one global minimum; w and v can't both be global minima if $w \neq v$; it would imply convex combinations u of w and v would have $f(u)$ below the global minimum.

Convex functions

For strictly convex objective f there can be at most one global optimum.
Proof:

1. Suppose x^{*} is a local minimum and also there exists another local minimum $x^{\#}$ $\left(\neq x^{*}\right)$.
2. Since f is convex (because it is strictly convex), $f\left(x^{*}\right)$ and $f\left(x^{\#}\right)$ are both global minima, and $f\left(x^{*}\right)=f\left(x^{\#}\right)$.
3. The C^{0} definition for $y=\theta x^{*}+(1-\theta) x^{\#}$, i.e.,

$$
f(y)<\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{\#}\right)=\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{*}\right)=f\left(x^{*}\right)
$$

contradicts that x^{*} is a global minimum.
4. This means that for $x^{\#}$ to be a local minimum, it must be that $x^{\#}=x^{*}$.

Any questions?

