Convex Optimization Part 1: Preliminaries

Namhoon Lee

POSTECH

7 Sep 2022

Vector $x \in \mathbb{R}^n$

- ► $x = (x_1, ..., x_n)$
- length and direction (*e.g.*, n = 2)
- column vectors, row vectors

p-norm of vector $x \in \mathbb{R}^n$ where $1 \le p \le \infty$:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

•

$$\blacktriangleright p = \infty$$

• Example of v = (3, 4)

Subspace

The subset $S \subset \mathbb{R}^n$ is a subspace of \mathbb{R}^n if the following property holds: If x and y are any two elements of S, then

$$\alpha x + \beta y \in \mathcal{S}, \quad \forall \alpha, \beta \in \mathbb{R}$$
.

(*i.e.*, set closed under addition and scaling)

Span

 $\{s_1, s_2, ..., s_k\}$ is a spanning set for ${\mathcal S}$ if any vector $s \in {\mathcal S}$ can be written as

$$s = \alpha_1 s_1 + \alpha_2 s_2 + \ldots + \alpha_k s_k ,$$

for some $\alpha_1, \alpha_2, ..., \alpha_k$.

Linear independence

A set of vectors $x_1, x_2, ..., x_k \in \mathbb{R}^n$ is called linearly independent if there are no $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{R}$ such that

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k = 0 ,$$

except $\alpha_1 = \alpha_2 = \ldots = \alpha_k = 0.$

(*i.e.*, $x_1, x_2, ..., x_k$ are linearly independent if none of them can be written as a linear combination of the others.)

Basis

- If $\{x_1,...,x_k\}$ are linearly independent & span $\mathcal X$, we call them a basis of $\mathcal X$
 - ▶ k (the number of elements in the basis) is referred to as the dimension of X, and denoted by dim(X).
 - There are many ways to choose a basis of X in general, but that all bases contain the same nubmer of vectors.

Inner product / dot product on \mathbb{R}^n

$$u \cdot v = \langle u, v \rangle = u^{\top} v = \sum_{i=1}^{n} u_i v_i$$

Angle between u and v

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2}$$

• If they are perpenicular, $\langle u, v \rangle = 0$.

 ${\rm Projection} \ {\rm of} \ v \ {\rm onto} \ u$

$$v_{\mathbf{p}} = \frac{\langle v, u \rangle}{\|u\|_2^2} u$$

Cauchy-Schwarz inequality

$$|u^{\top}v| \le ||u||_2 ||v||_2$$

 \blacktriangleright Two sides are equal iff u and v are linearly dependent.

Triangle inequality

 $||u+v||_2 \le ||u||_2 + ||v||_2$

Outer product

$$u \otimes v = uv^{\top} = \begin{bmatrix} u_1v_1 & u_1v_2 & \dots & u_1v_n \\ u_2v_1 & u_2v_2 & \dots & u_2v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_nv_1 & u_nv_2 & \dots & u_nv_n \end{bmatrix}$$

Matrix $A \in \mathbb{R}^{m \times n}$

$$A = \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix}$$

Some concepts to recall

- ▶ square matrix
- transpose of a matrix
- symmetric matrix

 $\mathsf{Null}\ (A) = \{ x \in \mathbb{R}^n : Ax = 0 \}$

Range $(A) = \{y \in \mathbb{R}^n : Ax = y \text{ for some } x\}$

Rank (A) = dimension of span of columns/rows of A

If A is
$$n \times n$$
, Rank $(A) = n$ iff
Null $(A) = \{0\}$
Range $(A) = \mathbb{R}^n$
det $(A) \neq 0$

For a matrix $A \in \mathbb{R}^{n \times n}$, an eigenvalue λ and eigenvector v are those that satisfy

 $Av = \lambda v$.

For a symmetric matrix A,

- ► All eigenvalues are real.
- ► All eigenvectors are perpendicular to each other.

If A is nonsingular, none of its eigenvalues are zero.

For a symmetric matrix A, eigen or spectral decomposition

$$A = \sum_{i=1}^n \lambda_i v_i v_i^\top \; ,$$

or

$$A = Q \Lambda Q^\top ,$$

using matrix forms.

Positive semidefinite matrix

► A symmetric matrix A is called positive semidefinite, if all eigenvalues are greater than or equal to 0.

$$x^{\top} A x \ge 0 , \quad \forall x \in \mathbb{R}^n$$

► AA^{\top} and $A^{\top}A$ are always psd.

Analysis

Interior

An element $x\in C\subseteq \mathbb{R}^n$ is called an interior point of C if there exists an $\epsilon>0$ for which

$$\{y \mid \|y - x\|_2 \le \epsilon\} \subseteq C ,$$

i.e., there exists a ball centered at x that lies entirely in C.

Int C: the set of all points interior to C.

Analysis

Supremum ("least upper bound") and infimum ("greatest lower bound")

Suppose $C \subseteq \mathbb{R}$. A number *a* is an upper bound on *C* if $x \leq a, \forall x \in C$.

The set of upper bounds on C is either

- 1. empty (C is unbounded above)
- 2. all of \mathbb{R} ($C = \emptyset$)
- 3. a closed infinite interval $[b,\infty)$

Then, supremum of C (or $\sup C$) becomes

1. ∞

- 2. $-\infty$
- **3**. *b*

If the set C is finite, $\sup C$ is the maximum of its elements.

Calculus

Functions and derivatives

- Continuity
- Differentiability
- Derivative
- Gradient
- Hessian
- Quadratic function example

Any questions?