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Rates of convergence

So far we have seen rates of convergence for various classes of functions.

I For Lipschitz convex functions

I For smooth convex functions

I For smooth strongly convex functions

Q: Are they optimal? Can we do better?
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First-order oracle model

Is it possible that there exists faster algorithms?

I In order to address this question, we need to consider our model first.

Black-box first-order oracle model of computation:

I At xt it returns the evaluation of f(xt) and ∇f(xt).

I The algorithm can do anything with these as long as it does not involve f .

I In general a black-box procedure is a mapping from “history” to the next query
point, that it maps (x1, g1, ..., xt, gt) (with gs ∈ ∂f(xs)) to xt+1.
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Complexity of minimizing real-valued functions

Consider the following minimization problem

min
x∈[0,1]d

f(x) ,

where f is a real-valed function.

Q: Suppose that you can use any algorithm under some oracle model. For example, how
many zero-order oracle calls t do we need before we can guarantee f(xt)− f(x∗) ≤ ε?
I It is impossible since given any algorithm we can construct an f where
f(xt)− f(x∗) > ε forever and real numbers are uncountable This means that to
say anything in oracle model we need to make some assumptions on f .

I One of the simplest assumptions is Lipschitz f ; under this assumption, any
algorithm requires at least Ω(1/εd) iterations (e.g., O(1/εd) by grid search).
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Oracle lower bounds

For any t ≥ 0, xt+1 is in the linear span of g1, ..., gt, i.e., xt+1 ∈ Span(g1, ..., gt), and
B2(R) = {x ∈ Rn : ‖x‖ ≤ R}. Then we can prove oracle complexity lower bounds
(Bubeck et al. 2015).

Theorem (non-smooth f)

Let t ≤ n,L,R > 0. There exists a convex and L-Lipschitz function f such that

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)
.

I This means that the subgradient method is optimal (under oracle model).

I This does not mean that for a specific function that is Lipschitz and convex there
does not exist a better algorithm than subgradient descent.
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Theorem (smooth f)

Let t ≤ (n− 1)/2, β > 0. There exists β-smooth convex function f such that

min
1≤s≤t

f(xs)− f(x∗) ≥ 3β

32

‖x1 − x∗‖2

(t+ 1)2
.

Theorem (smooth and strongly-convex f)

Let κ > 1. There exists β-smooth and α-strongly convex function f : l2 → R with
κ = β/α such that for any t ≥ 1 one has

f(xt)− f(x∗) ≥ α

2

(√
κ− 1√
κ+ 1

2(t−1)
)
‖x1 − x∗‖2 .
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Momentum to reduce the gap

The oracle model of computations imply that under convexity (along with others)
there might exist faster algorithms than the gradient methods we’ve seen which
achieves faster rates of convergence.

I for smooth, strongly convex functions

Q: How can we accelerate the gradient methods to match the oracle bounds? What
else do we have?

I The idea is to make use of “momentum” based on previous iterates
{xt, xt−1, xt−2, ...}.
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Polyak’s momentum

Polyak’s momentum, a.k.a. “heavy-ball method” (Polyak 1964)

xt+1 = xt − ηt∇f(xt) + γt(xt − xt−1)

I Some reactive visualisation tool to show the effect of momentum (link)
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Nesterov’s accelerated gradient descent (Nesterov 1983)

Start with an initial point x1 = y1 and iterate the following equations for t ≥ 1

yt+1 = xt −
1

β
∇f(xt) ,

xt+1 =

(
1 +

√
κ− 1√
κ+ 1

)
yt+1 +

√
κ− 1√
κ+ 1

yt .

I This achieves the optimal rates for smooth (strongly) convex functions.
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I First performs GD to go from xt to yt+1 and then “slides” a bit further than yt+1

in the direction given by the previous point yt.
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Convergence analysis

Theorem (smooth and strongly convex)

Let f be α-strongly convex and β-smooth, then Nesterov’s accelerated gradient
descent satisfies

f(yt)− f(x∗) ≤ α+ β

2
‖x1 − x∗‖2 exp

(
− t− 1√

κ

)
.
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Proof.
Define α-strongly convex quadratic functions Φs, s ≥ 1 by induction as follows:

Φ1(x) = f(x1) +
α

2
‖x− x1‖2 ,

Φs+1(x) =

(
1− 1√

κ

)
Φs(x) +

1√
κ

(
f(xs) +∇f(xs)

>(x− xs) +
α

2
‖x− xs‖2

)
. (1)

Φs becomes a finer approximation (from below) to f in the following sense:

Φs+1(x) ≤ f(x) +

(
1− 1√

κ

)s
(Φ1(x)− f(x)) (2)

which can be proved by induction using α-strong convexity.
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For now suppose the following inequality holds true (proof deferred to Bubeck):

f(ys) ≤ min
x∈Rn

Φs(x) . (3)

Combining (1), (2), (3) and that f(x)− f(x∗) ≤ β
2 ‖x− x

∗‖2 from β-smoothness
obtains the rate given by theorem:

f(yt)− f(x∗) ≤ Φt(x
∗)− f(x∗)

≤
(

1− 1√
κ

)t−1
(Φ1(x

∗)− f(x∗))

≤ α+ β

2
‖x1 − x∗‖2

(
1− 1√

κ

)t−1
.
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Theorem (smooth and convex)

Let f be convex and β-smooth, then Nesterov’s accelerated gradient descent satisfies

f(yt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t2
.
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Proof.
First define a time-varying sequence λt and γt ≤ 0 as follows

λ0 = 0 , λt =
1 +

√
1 + 4λ2t−1

2
, and γt =

1− λt
λt+1

.

Then the algorithm becomes

yt+1 = xt −
1

β
∇f(xt) , xt+1 = (1− γt)yt+1 + γtyt .

Now use convexity, β-smoothness (at xs) and the algorithm

f(ys+1)− f(ys) ≤ ∇f(xs)
>(xs − ys)−

1

2β
‖∇f(xs)‖2

= β(xs − ys+1)
>(xs − ys)−

β

2
‖∇xs − ys+1‖2 (4)
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Similarly

f(ys+1)− f(x∗) ≤ β(xs − ys+1)
>(xs − x∗)−

β

2
‖∇xs − ys+1‖2 (5)

Now define δs = f(ys)− f(x∗), then (λs − 1) × (4) + (5) gives

λsδs+1 − (λs − 1)δs ≤ β(xs − ys+1)
>(λsxs − (λs − 1)ys − x∗)−

β

2
λs‖ys+1 − xs‖2

By multiplying λs to the above, using λ2s−1 = λ2s − λs gives

λ2sδs+1 − λ2s−1δs ≤
β

2

(
2λs(xs − ys+1)

>(λsxs − (λs − 1)ys − x∗)− ‖λs(ys+1 − xs)‖2
)

=
β

2

(
‖λsxs − (λs − 1)ys − x∗︸ ︷︷ ︸

us

‖2 − ‖λsys+1 − (λs − 1)ys − x∗︸ ︷︷ ︸
us+1?

‖2
)

=
β

2
(‖us‖2 − ‖us+1‖2)
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To check us+1, multiply λs+1 to the algorithm definition and use γs = 1−λs
λs+1

xs+1 = (1− γs)ys+1 + γsys

⇐⇒ λs+1xs+1 = λs+1ys+1 − λs+1γsys+1 + λs+1γsys

⇐⇒ λs+1xs+1 − (λs+1 − 1)ys+1 = λsys+1 − (λs − 1)ys

Summing for t− 1 iterations gives

δt ≤
β

2λ2t−1
‖u1‖2

which concludes proof with λt−1 ≥ t/2, achieving the convergence rate of O(1/t2).
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Any questions?
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