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Admin

Assignment 1 is due by midnight on Friday 30 September.

I Please keep in mind the course policies on late submission and
cheating/plagiarism.
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Unconstrained optimization

Let us consider the following unconstrained optimization problem

min
x∈Rn

f(x) .

I There is no constraint on x.

I We may assume that f is convex and differentiable.

I The goal is to find a minimum value f∗.
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Example 1: linear regression

Consider linear prediction
ŷ = β>x

I Given data {(x1, y1), (x2, y2), ..., (xn, yn)}, the goal is to find a linear relationship
between x and y.

This problem can be casted as a minimization problem:

min
β

n∑
i=1

(β>xi − yi)2 or min
β
‖Xβ − y‖2

where the goal is to find β∗ that minimizes the squared loss (hence least squares).

I We can also put some regularization term (e.g., ridge regression).
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Solving the least squares problem is quite simple.

I Take the derivative and set it equal to zero

I The solution

Some questions:

I How can this procedure be justified?

I Does the solution always exist? Is the solution unique?

I How expensive is it to compute the solution?
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Gradient descent

For the following unconstrained optimization problem

min
x∈Rn

f(x) ,

consider applying the Gradient Descent (GD) algorithm.

Gradient Descent
Start with some initial point x1, repeat the following update step iteratively

xt+1 = xt − η∇f(xt) ,

and stop at some point. Here η is a step size.
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Interpreting gradient descent

GD by function approximation:

f(x) ≈ f(x0) + 〈∇f(x0), x− x0〉+
1

2η
‖x− x0‖2

i.e., given x0 approximate f as a linear function plus a quadratic penalty term.

I Alternatively as a second-order Taylor expansion with the Hessian replaced with
identity.

Then choosing the next point as the minimum of the approximation gives

x+ = x− η∇f(x) ,

the iterative update rule that is essentially GD.
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Gradient descent for least squares

Solving the least squares with GD

How does it compare to the analytic solution?
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Example 2: simple quadratic

Consider the following problem:

min
x
f(x) = 3x2 + 4x− 2

I The solution is achieved at x∗ = −2/3.

Apply GD to the above?

I The same solution is achieved as t→∞ with a step size chosen appropriately.
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Step size

GD with different step sizes:

I Too large step size can overshoot.

I Too small step size can take too long to converge (if it does).
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Line search

The step size can be adjusted adaptively at each iteration.

I The idea is to impose on η so that it leads to some reduction in f .

Backtracking line search:

I The reduction in f should be proportional to both the step size and the
directional derivative.

I At each iteration t, start with some large step size η and decrease it to be αη with
α ∈ (0, 1) until it satisfies the Armijo condition:

f(xt − η∇f(wt)) ≤ f(xt)− γη‖∇f(xt)‖2

where γ ∈ (0, 1).

I More conditions can be added.
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Figure: Sufficient decrease condition (from the NW book).
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Smoothness

Let us consider the case where f is differentiable and ∇f is Lipschitz continuous. We
often call in this case the function is smooth.

Definition (Smoothness)

A differentiable function f : Rd → R is called β-smooth when ∇f is Lipschitz
continuous with Lipschitz constant β > 0, i.e., if there exists some constant β such
that the following is satisfied:

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2 ∀{x, y} .

I This ensures that gradients do not change arbitrarily quickly.

I This also means ∇2f(x) � βI if f is twice differentiable.
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A consequence of β-smoothness:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β

2
‖y − x‖2 ∀{x, y} .

i.e., a quadratic upper bound on f .
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Proof.
Recall from the fundamental theorem of calculus that

∫ 1
0 f
′(t)dt = f(1)− f(0). Then

we can write

f(y) = f(x) +

∫ 1

0
∇f((1− t)x+ ty)>(y − x)dt

= f(x) +∇f(x)>(y − x) +
∫ 1

0

(
∇f((1− t)x+ ty)−∇f(x)

)>
(y − x)dt

≤ f(x) +∇f(x)>(y − x) +
∫ 1

0
‖∇f((1− t)x+ ty)−∇f(x)‖‖(y − x)‖dt

≤ f(x) +∇f(x)>(y − x) +
∫ 1

0
tβ‖(y − x)‖2dt

= f(x) +∇f(x)>(y − x) + β

2
‖(y − x)‖2
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Also, consider running GD with η = 1/β for smooth f , i.e.

xt+1 = xt −
1

β
∇f(xt) .

By substituting variables in the smoothness upper bound we can write

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
β

2
‖xt+1 − xt‖2

= f(xt) + 〈∇f(xt),−
1

β
∇f(xt)〉+

β

2
‖ − 1

β
∇f(xt)‖2

= f(xt)−
1

2β
‖∇f(xt)‖2

I This implies that GD guarantees to decrease f (a.k.a. progress bound).
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Any questions?
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