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Admin

Assignment 1 is due by midnight on Friday 30 September.

P Please keep in mind the course policies on late submission and
cheating/plagiarism.
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Unconstrained optimization

Let us consider the following unconstrained optimization problem

min f(z) .

» There is no constraint on z.
> We may assume that f is convex and differentiable.

» The goal is to find a minimum value f*.
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Example 1: linear regression

Consider linear prediction
. T
y=pz

» Given data {(z1,41), (z2,42), -, (Tn,yn)}, the goal is to find a linear relationship
between x and y.

This problem can be casted as a minimization problem:
n
min} (87w —y:)? or min| X5 -yl
i=1

where the goal is to find 5* that minimizes the squared loss (hence least squares).

» We can also put some regularization term (e.g., ridge regression).
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Solving the least squares problem is quite simple.

> Take the derivative and set it equal to zero

» The solution

Some questions:
» How can this procedure be justified?
» Does the solution always exist? Is the solution unique?

> How expensive is it to compute the solution?
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Gradient descent

For the following unconstrained optimization problem

min f(z)

consider applying the Gradient Descent (GD) algorithm.

Gradient Descent
Start with some initial point x1, repeat the following update step iteratively

Ti41 = T — an(:Ut) ,

and stop at some point. Here 7 is a step size.
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Interpreting gradient descent

GD by function approximation:
1
f(x) = f(zo) + (Vf(20), 2 — 20) + %Hﬂﬁ — zo|?

i.e., given xy approximate f as a linear function plus a quadratic penalty term.

> Alternatively as a second-order Taylor expansion with the Hessian replaced with
identity.

Then choosing the next point as the minimum of the approximation gives
at =z —nVf(z),

the iterative update rule that is essentially GD.
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Gradient descent for least squares

Solving the least squares with GD

How does it compare to the analytic solution?
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Example 2: simple quadratic

Consider the following problem:

min f(z) = 322 + 42 — 2
x

» The solution is achieved at z* = —2/3.

Apply GD to the above?

» The same solution is achieved as ¢ — oo with a step size chosen appropriately.
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Step size

GD with different step sizes:

10 T T 10 T T T 10

-10 L . ~10 . . . ~10 . . .
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

» Too large step size can overshoot.

» Too small step size can take too long to converge (if it does).
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Line search

The step size can be adjusted adaptively at each iteration.

» The idea is to impose on 7 so that it leads to some reduction in f.

Backtracking line search:

» The reduction in f should be proportional to both the step size and the
directional derivative.

> At each iteration ¢, start with some large step size n and decrease it to be an with
a € (0,1) until it satisfies the Armijo condition:

flae =V f(we) < fae) — |V f ()]

where v € (0,1).
> More conditions can be added.
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0(0) =f(x,+op,)
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Figure: Sufficient decrease condition (from the NW book).
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Smoothness

Let us consider the case where f is differentiable and V f is Lipschitz continuous. We
often call in this case the function is smooth.

Definition (Smoothness)

A differentiable function f : R¢ — R is called $-smooth when ¥ f is Lipschitz
continuous with Lipschitz constant 3 > 0, i.e., if there exists some constant (3 such
that the following is satisfied:

IVf(@) =Vl <Bllz—ylla  Yz,y} .

» This ensures that gradients do not change arbitrarily quickly.
» This also means V2f(x) < BI if f is twice differentiable.
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A consequence of S-smoothness:

F) < F@) + (VF@hy—a)+ Sy —al? Vi)

i.e., a quadratic upper bound on f.
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Proof.
Recall from the fundamental theorem of calculus that fol f/(t)dt = f(1) — f(0). Then
we can write

1) = 1@+ [ VA= e ) e
= @)+ VI -0+ [ (VIO e t) - V1) (-
< I@+VI@ =)+ [ IV~ 00 10) = VI - 2
<@+ V@ -+ [ il - o

= f@) 4 V@) -2 + D - o)
L]
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Also, consider running GD with n = 1/ for smooth f, i.e.

Tt41 = Tt — ;Vf(fﬁt) .

By substituting variables in the smoothness upper bound we can write

fl@epr) < flae) + (VI (), w1 — ) + g”ﬂftﬂ —
= f(an) + (V) =59 @) + 5 = 5@l

—f@ﬁ—iﬂvﬂmNQ

» This implies that GD guarantees to decrease f (a.k.a. progress bound).
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Any questions?
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