Convex Optimization
 Part 2: Gradient descent (1/2)

Namhoon Lee
POSTECH
19 Sep 2022

Admin

Assignment 1 is due by midnight on Friday 30 September.

- Please keep in mind the course policies on late submission and cheating/plagiarism.

Unconstrained optimization

Let us consider the following unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

- There is no constraint on x.
- We may assume that f is convex and differentiable.
- The goal is to find a minimum value f^{*}.

Example 1: linear regression

Consider linear prediction

$$
\hat{y}=\beta^{\top} x
$$

- Given data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, the goal is to find a linear relationship between x and y.

This problem can be casted as a minimization problem:

$$
\min _{\beta} \sum_{i=1}^{n}\left(\beta^{\top} x_{i}-y_{i}\right)^{2} \quad \text { or } \quad \min _{\beta}\|X \beta-y\|^{2}
$$

where the goal is to find β^{*} that minimizes the squared loss (hence least squares).

- We can also put some regularization term (e.g., ridge regression).

Solving the least squares problem is quite simple.

- Take the derivative and set it equal to zero
- The solution

Some questions:

- How can this procedure be justified?
- Does the solution always exist? Is the solution unique?
- How expensive is it to compute the solution?

Gradient descent

For the following unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

consider applying the Gradient Descent (GD) algorithm.

Gradient Descent

Start with some initial point x_{1}, repeat the following update step iteratively

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right),
$$

and stop at some point. Here η is a step size.

Interpreting gradient descent

GD by function approximation:

$$
f(x) \approx f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{1}{2 \eta}\left\|x-x_{0}\right\|^{2}
$$

i.e., given x_{0} approximate f as a linear function plus a quadratic penalty term.

- Alternatively as a second-order Taylor expansion with the Hessian replaced with identity.

Then choosing the next point as the minimum of the approximation gives

$$
x^{+}=x-\eta \nabla f(x),
$$

the iterative update rule that is essentially GD.

Gradient descent for least squares

Solving the least squares with GD

How does it compare to the analytic solution?

Example 2: simple quadratic

Consider the following problem:

$$
\min _{x} f(x)=3 x^{2}+4 x-2
$$

- The solution is achieved at $x^{*}=-2 / 3$.

Apply GD to the above?

- The same solution is achieved as $t \rightarrow \infty$ with a step size chosen appropriately.

Step size

GD with different step sizes:

- Too large step size can overshoot.
- Too small step size can take too long to converge (if it does).

Line search

The step size can be adjusted adaptively at each iteration.

- The idea is to impose on η so that it leads to some reduction in f.

Backtracking line search:

- The reduction in f should be proportional to both the step size and the directional derivative.
- At each iteration t, start with some large step size η and decrease it to be $\alpha \eta$ with $\alpha \in(0,1)$ until it satisfies the Armijo condition:

$$
f\left(x_{t}-\eta \nabla f\left(w_{t}\right)\right) \leq f\left(x_{t}\right)-\gamma \eta\left\|\nabla f\left(x_{t}\right)\right\|^{2}
$$

where $\gamma \in(0,1)$.

- More conditions can be added.

Figure: Sufficient decrease condition (from the NW book).

Smoothness

Let us consider the case where f is differentiable and ∇f is Lipschitz continuous. We often call in this case the function is smooth.

Definition (Smoothness)

A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called β-smooth when ∇f is Lipschitz continuous with Lipschitz constant $\beta>0$, i.e., if there exists some constant β such that the following is satisfied:

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq \beta\|x-y\|_{2} \quad \forall\{x, y\} .
$$

- This ensures that gradients do not change arbitrarily quickly.
- This also means $\nabla^{2} f(x) \preceq \beta I$ if f is twice differentiable.

A consequence of β-smoothness:

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\|y-x\|^{2} \quad \forall\{x, y\}
$$

i.e., a quadratic upper bound on f.

Proof.

Recall from the fundamental theorem of calculus that $\int_{0}^{1} f^{\prime}(t) d t=f(1)-f(0)$. Then we can write

$$
\begin{aligned}
f(y) & =f(x)+\int_{0}^{1} \nabla f((1-t) x+t y)^{\top}(y-x) d t \\
& =f(x)+\nabla f(x)^{\top}(y-x)+\int_{0}^{1}(\nabla f((1-t) x+t y)-\nabla f(x))^{\top}(y-x) d t \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\int_{0}^{1}\|\nabla f((1-t) x+t y)-\nabla f(x)\|\|(y-x)\| d t \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\int_{0}^{1} t \beta\|(y-x)\|^{2} d t \\
& =f(x)+\nabla f(x)^{\top}(y-x)+\frac{\beta}{2}\|(y-x)\|^{2}
\end{aligned}
$$

Also, consider running GD with $\eta=1 / \beta$ for smooth f, i.e.

$$
x_{t+1}=x_{t}-\frac{1}{\beta} \nabla f\left(x_{t}\right) .
$$

By substituting variables in the smoothness upper bound we can write

$$
\begin{aligned}
f\left(x_{t+1}\right) & \leq f\left(x_{t}\right)+\left\langle\nabla f\left(x_{t}\right), x_{t+1}-x_{t}\right\rangle+\frac{\beta}{2}\left\|x_{t+1}-x_{t}\right\|^{2} \\
& =f\left(x_{t}\right)+\left\langle\nabla f\left(x_{t}\right),-\frac{1}{\beta} \nabla f\left(x_{t}\right)\right\rangle+\frac{\beta}{2}\left\|-\frac{1}{\beta} \nabla f\left(x_{t}\right)\right\|^{2} \\
& =f\left(x_{t}\right)-\frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2}
\end{aligned}
$$

- This implies that GD guarantees to decrease f (a.k.a. progress bound).

Any questions?

