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Consequence of quadratic upper bound

Bound on suboptimality
If fis B-smooth, then
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Proof.
» (right) it follows from the quadratic upper bound set with y = =,z = x*.

> (left) it follows from minimizing the bound w.r.t. y, plugging it in, and lower
bounding with f(z*).

O
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Co-coercivity of gradient

Co-coercivity
If fis convex and -smooth, then

(V) - V) z—y) > ;nvﬂx) SR Yoy

» Notice, this in turn implies the smoothness (by Cauchy-Schwarz).

» Thus, smoothness = upper bound = co-coercivity = smoothness, meaning that
they are equivalent.
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Proof.

Define two convex functions f, fy
fo(2) = f(2) =(Vf(z),2) and  fy(2) = f(2) = (VS (y),2)
Notice that z = x minimizes f;(z), and similiarly, z = y minimizes f,(z). Now write

fly) = (f(2) +(Vf(2),y —2) = f(y) = (Vf(2),y) — (f(2) = (Vf(z),2))
= fa(y) — fz(x)

> QTBHfo(y)H% (from suboptimality bound)
1
= 5lIVIW) - Vi@)3

Similarly,
fla) = (fly) +(Vfy),z—y) = 216||Vf(1’) ~VIiwl3

Adding these will give co-coercivity. [
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Equivalence to smoothness

For f being [-smooth is equivalent to the following:

B

§||33H§ — f(x) is a convex function.

Proof.

By Cauchy-Schwarz on smoothness, we can write
(Vi) = Viy),z—y) <Ble—yl3.

This is monotonicity of Sx — V f(x) (i.e., prove immediately by definition). This
further leads to the desired result, i.e., ngHg — f(z), because of the equivalence
between monotonicity of gradient and convexity. O]

» Notice this can be used to show the smoothness characterization for twice
differentiable f, i.e., V2f(x) < BI.
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Convergence analysis

Does gradient descent ever converge? How fast does it converge when it does?

> We need to analyse its convergence properties or convergence rate.
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Convergence of smooth functions

Theorem
For [3-smooth functions, gradient descent with the step size n = 1/ after T' iterations

satisfies 95R
ppin [VI@EIIT < =

where R = f(x1) — f*.

Proof.

The proof is straightforward from the progress bound and noting that f(z;) > f*. [
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Notes

> After T iterations we find at least one t with ||V f(z)||? = O(1/t); i.e., the
suboptimality gap or error € decreases proportionally to 1/¢ rate.

» The number of iterations required to achive e-accuracy is proportional to 1/e.

» This result does not mean that it is the last ¢ that minimizes f or the minimum
found is a global minimum.
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Convergence of smooth convex functions

Theorem

For [3-smooth convex functions, gradient descent with the step size n = 1/ after T
iterations satisfies

1

f( 5T

M|

T
. BR?
DRV
t=1
where R = ||z1 — z*||.

Proof.
The proof is straightforward from the convexity and progress bound (see next). O
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To complete the proof, we can write

foss =" = lax = 59 F ) = o
= Nl =" = S o =" VA a0) + 5519 )P
<l = | = 5 (o) — @) + 59|
< = | = S (e) = F@) + (@) = Flaen)
= Nl =" = S (faess) = @)
Rearranging terms gives
Fleeen) = £ < 2 (e — 22— fzes — 2 |P)

By taking the sum over T iterations (and additional steps) we get the desired result.
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Any questions?
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