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Consequence of quadratic upper bound

Bound on suboptimality

If f is β-smooth, then

1

2β
‖∇f(x)‖22 ≤ f(x)− f(x∗) ≤

β

2
‖x− x∗‖2 ∀x

Proof.
I (right) it follows from the quadratic upper bound set with y = x, x = x∗.

I (left) it follows from minimizing the bound w.r.t. y, plugging it in, and lower
bounding with f(x∗).
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Co-coercivity of gradient

Co-coercivity

If f is convex and β-smooth, then

〈∇f(x)−∇f(y), x− y〉 ≥ 1

β
‖∇f(x)−∇f(y)‖22 ∀x, y

I Notice, this in turn implies the smoothness (by Cauchy-Schwarz).

I Thus, smoothness ⇒ upper bound ⇒ co-coercivity ⇒ smoothness, meaning that
they are equivalent.
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Proof.
Define two convex functions fx, fy

fx(z) = f(z)− 〈∇f(x), z〉 and fy(z) = f(z)− 〈∇f(y), z〉

Notice that z = x minimizes fx(z), and similiarly, z = y minimizes fy(z). Now write

f(y)− (f(x) + 〈∇f(x), y − x〉) = f(y)− 〈∇f(x), y〉 − (f(x)− 〈∇f(x), x〉)
= fx(y)− fx(x)

≥ 1

2β
‖∇fx(y)‖22 (from suboptimality bound)

=
1

2β
‖∇f(y)−∇f(x)‖22

Similarly,

f(x)− (f(y) + 〈∇f(y), x− y〉) ≥ 1

2β
‖∇f(x)−∇f(y)‖22

Adding these will give co-coercivity.
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Equivalence to smoothness

For f being β-smooth is equivalent to the following:

β

2
‖x‖22 − f(x) is a convex function.

Proof.
By Cauchy-Schwarz on smoothness, we can write

〈∇f(x)−∇f(y), x− y〉 ≤ β‖x− y‖22 .

This is monotonicity of βx−∇f(x) (i.e., prove immediately by definition). This
further leads to the desired result, i.e., β

2 ‖x‖
2
2 − f(x), because of the equivalence

between monotonicity of gradient and convexity.

I Notice this can be used to show the smoothness characterization for twice
differentiable f , i.e., ∇2f(x) � βI.
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Convergence analysis

Does gradient descent ever converge? How fast does it converge when it does?

I We need to analyse its convergence properties or convergence rate.
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Convergence of smooth functions

Theorem
For β-smooth functions, gradient descent with the step size η = 1/β after T iterations
satisfies

min
t={1,...,T}

‖∇f(xt)‖2 ≤
2βR

T

where R = f(x1)− f∗.

Proof.
The proof is straightforward from the progress bound and noting that f(xt) ≥ f∗.
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Notes

I After T iterations we find at least one t with ‖∇f(xt)‖2 = O(1/t); i.e., the
suboptimality gap or error ε decreases proportionally to 1/t rate.

I The number of iterations required to achive ε-accuracy is proportional to 1/ε.

I This result does not mean that it is the last t that minimizes f or the minimum
found is a global minimum.
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Convergence of smooth convex functions

Theorem
For β-smooth convex functions, gradient descent with the step size η = 1/β after T
iterations satisfies

f(
1

T

T∑
t=1

xt)− f∗ ≤
βR2

2T

where R = ‖x1 − x∗‖.

Proof.
The proof is straightforward from the convexity and progress bound (see next).
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To complete the proof, we can write

‖xt+1 − x∗‖2 = ‖xt −
1

β
∇f(xt)− x∗‖2

= ‖xt − x∗‖2 −
2

β
〈xt − x∗,∇f(xt)〉+

1

β2
‖∇f(xt)‖2

≤ ‖xt − x∗‖2 −
2

β
(f(xt)− f(x∗)) +

1

β2
‖∇f(xt)‖2

≤ ‖xt − x∗‖2 −
2

β
(f(xt)− f(x∗)) +

2

β
(f(xt)− f(xt+1))

= ‖xt − x∗‖2 −
2

β
(f(xt+1)− f(x∗))

Rearranging terms gives

f(xt+1)− f(x∗) ≤
β

2
(‖xt − x∗‖2 − ‖xt+1 − x∗‖2)

By taking the sum over T iterations (and additional steps) we get the desired result.
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Any questions?
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