Convex Optimization

Part 2: Gradient descent (more)

Namhoon Lee
POSTECH
26 Sep 2022

Admin

Attendance

- The university policy requires students to attend $>3 / 4$ of a course to claim the credit. Please record your attendance using the app "포스텍 전자출결".

Assignment 1

- due by this Friday

Strong convexity

f is strongly convex with parameter $\alpha>0$ if, for all x, y and $t \in[0,1]$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{\alpha}{2} t(1-t)\|x-y\|_{2}^{2}
$$

- A stronger version of convexity

For f being α-strongly convex is equivalent to the following:

$$
f(x)-\frac{\alpha}{2}\|x\|_{2}^{2} \quad \text { is convex. }
$$

- For twice differentiable f this means $\nabla^{2} f(x) \succeq \alpha I$.

A consequence of α-strong convexity

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\alpha}{2}\|y-x\|^{2} \quad \forall x, y
$$

i.e., a quadratic lower bound on f.

Consequence of quadratic lower bound

Bound on suboptimality

$$
\frac{\alpha}{2}\left\|x-x^{*}\right\|^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{1}{2 \alpha}\|\nabla f(x)\|_{2}^{2}
$$

- The right-hand inequality is a.k.a. Polyak-tojasiewicz (PL) inequality.

Proof.

The proof is done similarly as for smoothness.

Coercivity of gradient

Coercivity

If f is α-strongly convex, then

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \alpha\|x-y\|_{2}^{2} \quad \forall x, y
$$

- a.k.a. strong monotonicity of ∇f.

Proof.
The proof follows by adding the quadratic lower bounds with x, y switched.

Extension of co-coercivity

Extension of co-coercivity

For f being α-strongly convex and β-smooth, the co-coercivity of gradient extends to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\alpha \beta}{\alpha+\beta}\|x-y\|_{2}^{2}+\frac{1}{\alpha+\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \quad \forall x, y
$$

Proof.

First, f being α-strongly convex means the following is convex.

$$
g(x)=f(x)-\frac{\alpha}{2}\|x\|_{2}^{2}
$$

Thus,

$$
\begin{aligned}
0 & \leq\langle\nabla g(x)-\nabla g(y), x-y\rangle \\
& =\langle\nabla f(x)-\nabla f(y), x-y\rangle-\alpha\|x-y\|_{2}^{2} \\
& \leq(\beta-\alpha)\|x-y\|_{2}^{2}
\end{aligned}
$$

(monotonicity of g)
(def. of g)
(β-smoothness)
which shows that g is $(\beta-\alpha)$-smooth (from the first and last lines).
Then writing out co-coercivity of ∇g (and rearranging terms) will finish the proof.

Convergence for smooth and strongly convex functions

Theorem

For β-smooth and α-strongly convex functions, gradient descent with the step size $\eta=2 /(\alpha+\beta)$ after T iterations satisfies

$$
f\left(x_{T+1}\right)-f^{*} \leq \rho^{T} \frac{\beta R^{2}}{2}
$$

where $\rho=\left(\frac{\kappa-1}{\kappa+1}\right)^{2}$ with $\kappa=\beta / \alpha$ and $R=\left\|x_{1}-x^{*}\right\|_{2}$.

- This achieves the linear convergence rate of $\mathcal{O}\left(\rho^{t}\right)$.
- The number of iterations to reach ϵ-accuracy is $\mathcal{O}(\log (1 / \epsilon))$.
- Big κ leads to slow convergence.

Proof.
For GD with step size $\eta=2 /(\alpha+\beta)$ we can write

$$
\begin{aligned}
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} & =\left\|x_{t}-\frac{2}{\alpha+\beta} \nabla f\left(x_{t}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|x_{t}-x^{*}\right\|_{2}^{2}-\frac{4}{\alpha+\beta}\left\langle\nabla f\left(x_{t}\right), x_{t}-x^{*}\right\rangle+\left(\frac{2}{\alpha+\beta}\right)^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{2}^{2} \\
& \leq\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

where κ the last inquality follows from the extension of co-coercivity. Expanding on t

$$
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq \rho^{t}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

where $\rho=\left(\frac{\kappa-1}{\kappa+1}\right)^{2}$ with $\kappa=\beta / \alpha$. Further using the suboptimality bound we derived previously will finish the proof.

Any questions?

