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Subgradient

g is a subgradient of a convex function f at z if

f) = f@) +9"(y—=x) Vy

» If f is differentiable at x, then g = V f(z).
> If f is non-differentiable at x, then there could be multiple g.
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Subdifferential

The subdifferential 0f(x) of f at x is the set of all subgradients
of(@)={g | f(y) = f(x) + 9" (y — 2), Vy}

» Of(x) is a closed convex set (by def. of convex set).

» When z € int dom f, df(x) is nonempty (it could be empty for nonconvex) and
bounded (see BV).

> If f is differentiable at x, then 9f(z) = {Vf(z)}.
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Examples

Absolute value

Subgradients
» For z # 0, g = sign(x).
» Forx =0, g is any element in [—1,1] or f(x) ={g | g € [-1,1]}.
» Check if this satisfies the subgradient definition.
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Examples

Euclidean norm (2-norm)

f(x) ==zl
Subgradients
> For:r#O,g:mw.
> Forz =0, 9f(x) ={g | llgll2 < 1}.
> Why later.
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Examples

Taxicab norm (1-norm)

f(@) = |lzlly

Subgradients
» For z; # 0, g; = sign(z;).
» For z; = 0, i-th component g; is any element in [—1,1].
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Examples

Pointwise maximum of convex differentiable f1, fo

f(x) = max{fi(z), fo(z)}

Subgradients

» For fi(z) > fa(x), g = Vfi(x).

» For fi(z) < fa(x), g = Vfa(x).

» For fi(z) = fa(x), g is any point on line segment between V fi(z) and V f3(z)
(e, tVfi(x) + (1 = t)V fa(x) for any t € [0, 1]).
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Examples

Indicator function over convex set

Subgradients
» Forz € C, dlc(z) = Ne(x)
» Why? By the definitions of subgradient and normal cone

Io(y) > Ic(x)+ 9" (y—x) Yy

Ne(@)={glg'(y—=z) <0, VyeC}
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Examples

Piecewise-linear
f(z) = max (a; x +b;)

i=1,....m

Subgradients
» the subdifferential at x is a polyhedron

Of(x) = convi{a; | i € I(z)}

with I(z) = {i | a] = + b; = f(2)}
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Subgradient calculus

Differentiable functions
If f is differentiable at z, then

Of(x) ={Vf(x)}
Nonnegative linear combination
If f(x = a1 fi(x) + azfa(x)) with ag, e > 0, then
Of(x) = a1 dfi(x) + agd fa(x)
(RHS is set sum)

Affine transformation of variables
if g(z) = f(Ax +b), then
dg(z) = ATOf(Az +b)
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Pointwise maximum
If f(x) =max{fi(z),..., fm(z)} and define I(x) = {i | fi(z) = f(x)}, the “active”

functions at z, then
Of(z) = conv U Ofi(x)
iel(x)

» j.e., the convex hull of the union of subdifferentials of active functions at =

» This extends to pointwise supremum (i.e., m not finite) with some extra
conditions.
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Norms
If f(x) = ||z||, and let ¢ be such that 1/p+1/¢ =1, then

Of (x) = argmax y 'z
lyllq<1

» One way to understand this is via dual norm and from which the calculus rule for
pointwise supremum

|z]l, = max y'z
P ylle1

» Check this pictorially as well for example when p = 2.
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Optimality conditions for unconstrained optimization

For unconstrained optimization
min f(x)
x

Optimality condition: x* minimizes f(z) if

0€ df(z*)

Proof.

This follows directly from the definition of subgradient at z*

f) = f@)+0"(y—a*) vy
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Optimality conditions for constrained optimization

For constrained optimization
min f(z) subjectto z€C
x
Optimality condition: x* minimizes f(z) if

0 € df(x*) + No(z)

Proof.
The proof is done by converting the constraint into a penalty term and applying the

optimality condition; or simply in a pictorial form.

O

14/15



Any questions?
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