Convex Optimization

Part 2: Subgradient method (1/2)

Namhoon Lee
POSTECH
26 Sep 2022

Subgradient

g is a subgradient of a convex function f at x if

$$
f(y) \geq f(x)+g^{\top}(y-x) \quad \forall y
$$

- If f is differentiable at x, then $g=\nabla f(x)$.
- If f is non-differentiable at x, then there could be multiple g.

Subdifferential

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients

$$
\partial f(x)=\left\{g \mid f(y) \geq f(x)+g^{\top}(y-x), \forall y\right\}
$$

- $\partial f(x)$ is a closed convex set (by def. of convex set).
- When $x \in \operatorname{int} \operatorname{dom} f, \partial f(x)$ is nonempty (it could be empty for nonconvex) and bounded (see BV).
- If f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$.

Examples

Absolute value

$$
f(x)=|x|
$$

Subgradients

- For $x \neq 0, g=\operatorname{sign}(x)$.
- For $x=0, g$ is any element in $[-1,1]$ or $\partial f(x)=\{g \mid g \in[-1,1]\}$.
- Check if this satisfies the subgradient definition.

Examples

Euclidean norm (2-norm)

$$
f(x)=\|x\|_{2}
$$

Subgradients

- For $x \neq 0, g=\frac{1}{\|x\|_{2}} x$.
- For $x=0, \partial f(x)=\left\{g \mid\|g\|_{2} \leq 1\right\}$.
- Why later.

Examples

Taxicab norm (1-norm)

$$
f(x)=\|x\|_{1}
$$

Subgradients

- For $x_{i} \neq 0, g_{i}=\operatorname{sign}\left(x_{i}\right)$.
- For $x_{i}=0, i$-th component g_{i} is any element in $[-1,1]$.

Examples

Pointwise maximum of convex differentiable f_{1}, f_{2}

$$
f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}
$$

Subgradients

- For $f_{1}(x)>f_{2}(x), g=\nabla f_{1}(x)$.
- For $f_{1}(x)<f_{2}(x), g=\nabla f_{2}(x)$.
- For $f_{1}(x)=f_{2}(x), g$ is any point on line segment between $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$ (i.e., $t \nabla f_{1}(x)+(1-t) \nabla f_{2}(x)$ for any $\left.t \in[0,1]\right)$.

Examples

Indicator function over convex set

$$
I_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

Subgradients

- For $x \in C, \partial I_{C}(x)=\mathcal{N}_{C}(x)$
- Why? By the definitions of subgradient and normal cone

$$
\begin{gathered}
I_{C}(y) \geq I_{C}(x)+g^{\top}(y-x) \quad \forall y \\
\mathcal{N}_{C}(x)=\left\{g \mid g^{\top}(y-x) \leq 0, \quad \forall y \in C\right\}
\end{gathered}
$$

Examples

Piecewise-linear

$$
f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{\top} x+b_{i}\right)
$$

Subgradients

- the subdifferential at x is a polyhedron

$$
\partial f(x)=\operatorname{conv}\left\{a_{i} \mid i \in I(x)\right\}
$$

with $I(x)=\left\{i \mid a_{i}^{\top} x+b_{i}=f(x)\right\}$

Subgradient calculus

Differentiable functions

If f is differentiable at x, then

$$
\partial f(x)=\{\nabla f(x)\}
$$

Nonnegative linear combination
If $f\left(x=\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)\right)$ with $\alpha_{1}, \alpha_{2} \geq 0$, then

$$
\partial f(x)=\alpha_{1} \partial f_{1}(x)+\alpha_{2} \partial f_{2}(x)
$$

(RHS is set sum)
Affine transformation of variables
if $g(x)=f(A x+b)$, then

$$
\partial g(x)=A^{\top} \partial f(A x+b)
$$

Pointwise maximum
If $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ and define $I(x)=\left\{i \mid f_{i}(x)=f(x)\right\}$, the "active" functions at x, then

$$
\partial f(x)=\operatorname{conv} \bigcup_{i \in I(x)} \partial f_{i}(x)
$$

- i.e., the convex hull of the union of subdifferentials of active functions at x
- This extends to pointwise supremum (i.e., m not finite) with some extra conditions.

Norms
If $f(x)=\|x\|_{p}$ and let q be such that $1 / p+1 / q=1$, then

$$
\partial f(x)=\underset{\|y\|_{q} \leq 1}{\arg \max } y^{\top} x
$$

- One way to understand this is via dual norm and from which the calculus rule for pointwise supremum

$$
\|x\|_{p}=\max _{\|y\|_{q} \leq 1} y^{\top} x
$$

- Check this pictorially as well for example when $p=2$.

Optimality conditions for unconstrained optimization

For unconstrained optimization

$$
\min _{x} f(x)
$$

Optimality condition: x^{*} minimizes $f(x)$ if

$$
0 \in \partial f\left(x^{*}\right)
$$

Proof.
This follows directly from the definition of subgradient at x^{*}

$$
f(y) \geq f\left(x^{*}\right)+0^{\top}\left(y-x^{*}\right) \quad \forall y
$$

Optimality conditions for constrained optimization

For constrained optimization

$$
\min _{x} f(x) \quad \text { subject to } \quad x \in C
$$

Optimality condition: x^{*} minimizes $f(x)$ if

$$
0 \in \partial f\left(x^{*}\right)+\mathcal{N}_{C}(x)
$$

Proof.
The proof is done by converting the constraint into a penalty term and applying the optimality condition; or simply in a pictorial form.

Any questions?

