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Subgradient

g is a subgradient of a convex function f at x if

f(y) ≥ f(x) + g>(y − x) ∀y

I If f is differentiable at x, then g = ∇f(x).
I If f is non-differentiable at x, then there could be multiple g.
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Subdifferential

The subdifferential ∂f(x) of f at x is the set of all subgradients

∂f(x) = {g | f(y) ≥ f(x) + g>(y − x), ∀y}

I ∂f(x) is a closed convex set (by def. of convex set).

I When x ∈ int dom f , ∂f(x) is nonempty (it could be empty for nonconvex) and
bounded (see BV).

I If f is differentiable at x, then ∂f(x) = {∇f(x)}.
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Examples

Absolute value
f(x) = |x|

Subgradients

I For x 6= 0, g = sign(x).
I For x = 0, g is any element in [−1, 1] or ∂f(x) = {g | g ∈ [−1, 1]}.

I Check if this satisfies the subgradient definition.
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Examples

Euclidean norm (2-norm)
f(x) = ‖x‖2

Subgradients

I For x 6= 0, g = 1
‖x‖2x.

I For x = 0, ∂f(x) = {g | ‖g‖2 ≤ 1}.
I Why later.
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Examples

Taxicab norm (1-norm)
f(x) = ‖x‖1

Subgradients

I For xi 6= 0, gi = sign(xi).

I For xi = 0, i-th component gi is any element in [−1, 1].
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Examples

Pointwise maximum of convex differentiable f1, f2

f(x) = max{f1(x), f2(x)}

Subgradients

I For f1(x) > f2(x), g = ∇f1(x).
I For f1(x) < f2(x), g = ∇f2(x).
I For f1(x) = f2(x), g is any point on line segment between ∇f1(x) and ∇f2(x)

(i.e., t∇f1(x) + (1− t)∇f2(x) for any t ∈ [0, 1]).
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Examples

Indicator function over convex set

IC(x) =

{
0 if x ∈ C
∞ if x /∈ C

Subgradients

I For x ∈ C, ∂IC(x) = NC(x)

I Why? By the definitions of subgradient and normal cone

IC(y) ≥ IC(x) + g>(y − x) ∀y

NC(x) = {g | g>(y − x) ≤ 0, ∀y ∈ C}
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Examples

Piecewise-linear
f(x) = max

i=1,...,m
(a>i x+ bi)

Subgradients

I the subdifferential at x is a polyhedron

∂f(x) = conv{ai | i ∈ I(x)}

with I(x) = {i | a>i x+ bi = f(x)}
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Subgradient calculus

Differentiable functions
If f is differentiable at x, then

∂f(x) = {∇f(x)}

Nonnegative linear combination

If f(x = α1f1(x) + α2f2(x)) with α1, α2 ≥ 0, then

∂f(x) = α1∂f1(x) + α2∂f2(x)

(RHS is set sum)

Affine transformation of variables
if g(x) = f(Ax+ b), then

∂g(x) = A>∂f(Ax+ b)
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Pointwise maximum
If f(x) = max{f1(x), ..., fm(x)} and define I(x) = {i | fi(x) = f(x)}, the “active”
functions at x, then

∂f(x) = conv
⋃

i∈I(x)

∂fi(x)

I i.e., the convex hull of the union of subdifferentials of active functions at x

I This extends to pointwise supremum (i.e., m not finite) with some extra
conditions.
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Norms
If f(x) = ‖x‖p and let q be such that 1/p+ 1/q = 1, then

∂f(x) = argmax
‖y‖q≤1

y>x

I One way to understand this is via dual norm and from which the calculus rule for
pointwise supremum

‖x‖p = max
‖y‖q≤1

y>x

I Check this pictorially as well for example when p = 2.
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Optimality conditions for unconstrained optimization

For unconstrained optimization
min
x
f(x)

Optimality condition: x∗ minimizes f(x) if

0 ∈ ∂f(x∗)

Proof.
This follows directly from the definition of subgradient at x∗

f(y) ≥ f(x∗) + 0>(y − x∗) ∀y
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Optimality conditions for constrained optimization

For constrained optimization

min
x
f(x) subject to x ∈ C

Optimality condition: x∗ minimizes f(x) if

0 ∈ ∂f(x∗) +NC(x)

Proof.
The proof is done by converting the constraint into a penalty term and applying the
optimality condition; or simply in a pictorial form.
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Any questions?
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