Convex Optimization Part 2: Subgradient method (2/2)

Namhoon Lee

POSTECH

28 Sep 2022

## Admin

Assignment 1 is being graded.

- ▶ The result will be uploaded on PLMS.
- ▶ You can check your result with TAs until Assignment 2 is due.

Assignment 2 is out already.

▶ Due by Wed 19 Oct.

No class on Mon 10 Oct.

Be reminded of pop quizzes.

## Least squares with $l_1$ -regularization

Given some data  $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$  and linear prediction model  $\hat{y} = \beta^\top x$ , consider the least squares with  $l_1$ -regularization

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

where  $\lambda$  is the regularization coefficient.

- If  $\lambda$  is sufficiently large, the solution can be sparse (useful for feature selection).
- ▶ Why? How does it compare to *l*<sub>2</sub>-regularization?
- Optimality condition?



Figure:  $l_2$  vs  $l_1$  regularization. Figure taken from Bishop.

Apply the optimality condition to both cases

For  $l_2$ -regularization

$$0 = -X_i^\top (y - X\beta) + \lambda\beta_i$$

• It is unlikely to be satisfied for  $\beta_i = 0$ .

For  $l_1$ -regularization

$$0 \in -X_i^\top (y - X\beta) + \lambda[-1, 1]$$

▶ The chance is better now since  $|X_i^{\top}(y - X\beta)| \in \lambda$  is more likely (with large  $\lambda$ ).

To complete, the optimality condition for lasso

$$0 \in \partial \left(\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}\right) \iff 0 \in -X^{\top}(y - X\beta) + \lambda \partial \|\beta\|_{1}$$
$$\iff \beta = (X^{\top}X)^{-1}(X^{\top}y - \lambda z)$$

where 
$$z = \partial \|\beta\|_1$$
, *i.e.*,  
$$z_i = \begin{cases} \mathsf{sign}(\beta_i) & \text{if } \beta_i \neq 0\\ \in [-1,1] & \text{if } \beta_i = 0 \end{cases}$$

This does not provide the optimal solution; rather it is a characterization; but still it could be useful. Consider minimizing f that is convex but not necessarily differentiable.

#### Subgradient method

Start with some initial point  $x_1$ , repeat the following update step iteratively

 $x_{t+1} = x_t - \eta_t g_t$ 

and stop at some point. Here  $g_t \in \partial f(x_t)$ , *i.e.*, any subgradient of f at  $x_t$ .

• One can keep  $x_{t,\text{best}}$  instead of  $x_T$  because subgradient method is not necessarily a descent method (hence the name); *i.e.*, it can increase the objective (why?).







## Step size

Fixed step size

• 
$$\eta_t = \bar{\eta}$$
 for all  $t = 1, 2, ...$ 

Diminishing step size

▶  $\eta_t \rightarrow 0$  as  $t \rightarrow \infty$ ; specifically  $\eta_t$  under the following conditions

$$\sum_{t=1}^\infty \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^\infty \eta_t^2 < \infty$$

*i.e.*,  $\eta_t$  decreases to 0 but not too fast.

Optimal step size

► 
$$\eta_t = (f(x_t) - f^*) / \|g_t\|_2^2$$

#### Convergence analysis

#### Theorem

For f convex and Lipschitz continuous with parameter G > 0 (or bounded subgradient), subgradient method with step size  $\eta$  satisfies

$$f(x_{t,\textit{best}}) - f^* \leq \frac{R^2}{2\eta T} + \frac{G^2\eta}{2}$$

where  $R = ||x_1 - x^*||_2$ .

- For fixed step size it fails to converge to 0 error (*i.e.*,  $G^2\eta/2$ -suboptimal).
- For diminishing step size  $\eta \propto 1/\sqrt{t}$ , we can get  $O(1/\sqrt{T})$  convergence rate which is slower than gradient descent (it makes sense why? smaller step sizes).
  - It does not accelerate even if we add momentum (later).

We prove for a general case in which subgradient method runs with step size  $\eta_t$  that decreases to 0 as t increases; *i.e.*, as  $\eta_t \to 0$  as  $t \to \infty$  and further  $\sum_{t=1}^{\infty} \eta_t = \infty$ .

#### Proof.

Following the similar convergence proof for gradient descent and using the bounded gradient assumption we arrive

$$||x_{t+1} - x^*||_2^2 \le ||x_t - x^*||_2^2 - 2\eta_t(f(x_t) - f(x^*)) + \eta_t^2 G^2$$

Summing for T iterations, lower-bounding  $f(x_t)$  with  $f(x_{t,\text{best}})$ , and rearranging terms

$$f(x_{t,\text{best}}) - f^* \le \frac{R^2 + G^2 \sum_{t=1}^T \eta_t^2}{2 \sum_{t=1}^T \eta_t}$$

For  $\eta_t \propto 1/\sqrt{t}$ ,  $\sum_{t=1}^T \eta_t^2 / \sum_{t=1}^T \eta_t \to 0$ , indicating that  $f(x_{t,\text{best}})$  converges to  $f^*$ .

## Polyak step size (Polyak 1987)

If  $f^*$  is known, one can come up with optimal step sizes

$$\eta_t = \frac{f(x_t) - f^*}{\|g_t\|_2^2}$$

which is obtained by minimizing the intermediate result of progress in one iteration from the proof.

Applying this step size will give

$$f(x_{t,\mathsf{best}}) - f^* \le \frac{RG}{\sqrt{T}}$$

which achives the optimal result; the convergence rate is still  $O(1/\sqrt{T})$ .

A simple variant can get near optimal rates without knowledge of f\* (Hazan and Kakade 2019). While subgradient method can be applied nearly all non-smooth convex optimization, it is very slow ( $\mathcal{O}(1/\sqrt{t})$ ).

▶ This is an optimal rate, and it does not improve with a momentum scheme.

Instead we could make use of some structure of the problem, which could give us better convergence rates (next time).

# Any questions?