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Admin

Assignment 1 is being graded.

I The result will be uploaded on PLMS.

I You can check your result with TAs until Assignment 2 is due.

Assignment 2 is out already.

I Due by Wed 19 Oct.

No class on Mon 10 Oct.

Be reminded of pop quizzes.
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Least squares with l1-regularization

Given some data X ∈ Rn×d, y ∈ Rn and linear prediction model ŷ = β>x, consider the
least squares with l1-regularization

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ is the regularization coefficient.

I If λ is sufficiently large, the solution can be sparse (useful for feature selection).

I Why? How does it compare to l2-regularization?

I Optimality condition?

3 / 15



Figure: l2 vs l1 regularization. Figure taken from Bishop.
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Apply the optimality condition to both cases

For l2-regularization
0 = −X>i (y −Xβ) + λβi

I It is unlikely to be satisfied for βi = 0.

For l1-regularization
0 ∈ −X>i (y −Xβ) + λ[−1, 1]

I The chance is better now since |X>i (y −Xβ)| ∈ λ is more likely (with large λ).
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To complete, the optimality condition for lasso

0 ∈ ∂
(1

2
‖y −Xβ‖22 + λ‖β‖1

)
⇐⇒ 0 ∈ −X>(y −Xβ) + λ∂‖β‖1

⇐⇒ β = (X>X)−1(X>y − λz)

where z = ∂‖β‖1, i.e.,

zi =

{
sign(βi) if βi 6= 0

∈ [−1, 1] if βi = 0

I This does not provide the optimal solution; rather it is a characterization; but still
it could be useful.
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Subgradient method

Consider minimizing f that is convex but not necessarily differentiable.

Subgradient method

Start with some initial point x1, repeat the following update step iteratively

xt+1 = xt − ηtgt

and stop at some point. Here gt ∈ ∂f(xt), i.e., any subgradient of f at xt.

I One can keep xt,best instead of xT because subgradient method is not necessarily
a descent method (hence the name); i.e., it can increase the objective (why?).
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f(x) = |x|
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f(x1, x2) = |x1|+ 4|x2|
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Step size

Fixed step size

I ηt = η̄ for all t = 1, 2, ...

Diminishing step size

I ηt → 0 as t→∞; specifically ηt under the following conditions

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2t <∞

i.e., ηt decreases to 0 but not too fast.

Optimal step size

I ηt = (f(xt)− f∗)/‖gt‖22
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Convergence analysis

Theorem
For f convex and Lipschitz continuous with parameter G > 0 (or bounded
subgradient), subgradient method with step size η satisfies

f(xt,best)− f∗ ≤
R2

2ηT
+
G2η

2

where R = ‖x1 − x∗‖2.

I For fixed step size it fails to converge to 0 error (i.e., G2η/2-suboptimal).

I For diminishing step size η ∝ 1/
√
t, we can get O(1/

√
T ) convergence rate which

is slower than gradient descent (it makes sense why? smaller step sizes).
I It does not accelerate even if we add momentum (later).
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We prove for a general case in which subgradient method runs with step size ηt that
decreases to 0 as t increases; i.e., as ηt → 0 as t→∞ and further

∑∞
t=1 ηt =∞.

Proof.
Following the similar convergence proof for gradient descent and using the bounded
gradient assumption we arrive

‖xt+1 − x∗‖22 ≤ ‖xt − x∗‖22 − 2ηt(f(xt)− f(x∗)) + η2tG
2

Summing for T iterations, lower-bounding f(xt) with f(xt,best), and rearranging terms

f(xt,best)− f∗ ≤
R2 +G2

∑T
t=1 η

2
t

2
∑T

t=1 ηt

For ηt ∝ 1/
√
t,
∑T

t=1 η
2
t /
∑T

t=1 ηt → 0, indicating that f(xt,best) converges to f∗.
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Polyak step size (Polyak 1987)

If f∗ is known, one can come up with optimal step sizes

ηt =
f(xt)− f∗

‖gt‖22

which is obtained by minimizing the intermediate result of progress in one iteration
from the proof.

Applying this step size will give

f(xt,best)− f∗ ≤
RG√
T

which achives the optimal result; the convergence rate is still O(1/
√
T ).

I A simple variant can get near optimal rates without knowledge of f∗ (Hazan and
Kakade 2019).
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On the subgradient method

While subgradient method can be applied nearly all non-smooth convex optimization,
it is very slow (O(1/

√
t)).

I This is an optimal rate, and it does not improve with a momentum scheme.

Instead we could make use of some structure of the problem, which could give us
better convergence rates (next time).
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Any questions?
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