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Admin

Assignment 1 is being graded.
» The result will be uploaded on PLMS.

» You can check your result with TAs until Assignment 2 is due.

Assignment 2 is out already.
» Due by Wed 19 Oct.

No class on Mon 10 Oct.

Be reminded of pop quizzes.
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Least squares with [1-regularization

Given some data X € R™*? y € R™ and linear prediction model § = 3"z, consider the
least squares with [;-regularization

1
min §I|y — XB|3 + Al

where ) is the regularization coefficient.
> If A is sufficiently large, the solution can be sparse (useful for feature selection).
> Why? How does it compare to ls-regularization?

» Optimality condition?
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Figure: l5 vs l1 regularization. Figure taken from Bishop.
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Apply the optimality condition to both cases

For lo-regularization
0=—X(y— XB) + A5

» It is unlikely to be satisfied for 3; = 0.

For l1-regularization
0e-X(y—XB)+A-1,1]

> The chance is better now since | X, (y — X3)| € X is more likely (with large ).
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To complete, the optimality condition for lasso

0ed(3lly - XBB+AB) = 0e-XT(y—XB)+ 25l
= B=X"X)MXTy-N2)

where z = 90|81, i.e.,

_)sign(Bi)  ifBi#£0
Y lel-11] ifBi=0

» This does not provide the optimal solution; rather it is a characterization; but still
it could be useful.
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Subgradient method

Consider minimizing f that is convex but not necessarily differentiable.

Subgradient method
Start with some initial point x1, repeat the following update step iteratively

Tt41 = Tt — MGt

and stop at some point. Here g, € 0f(x), i.e., any subgradient of f at x;.

» One can keep ¥ pest instead of 7 because subgradient method is not necessarily
a descent method (hence the name); i.e., it can increase the objective (why?).
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Step size

Fixed step size

>y =nforallt=12,..

Diminishing step size

> 1, — 0 as t — oo; specifically 1, under the following conditions

[e.e] [e.e]
Znt = o0 and Zn? < 00
t=1 t=1

i.e., n; decreases to 0 but not too fast.

Optimal step size

> e = (f(xe) = )/ llgell3
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Convergence analysis

Theorem

For f convex and Lipschitz continuous with parameter G > 0 (or bounded
subgradient), subgradient method with step size 1 satisfies

R? G?n
<
f(xt,best) f = 27]T + 92

where R = ||z1 — x*||2.

> For fixed step size it fails to converge to 0 error (i.e., G?1/2-suboptimal).

> For diminishing step size 7 oc 1//, we can get O(1/v/T) convergence rate which
is slower than gradient descent (it makes sense why? smaller step sizes).

» It does not accelerate even if we add momentum (later).
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We prove for a general case in which subgradient method runs with step size 7; that
decreases to 0 as t increases; i.e., as 7y — 0 as t — oo and further Z;ﬁl N = 0Q.

Proof.

Following the similar convergence proof for gradient descent and using the bounded
gradient assumption we arrive

e — 213 < Nl — 213 = 20e(f (a0) = f(¥)) + 0} G
Summing for T iterations, lower-bounding f(z;) with f(z;pest), and rearranging terms

. R+GYL
f(xt,best) - < thfl Un
2 Zt:l ui

For n: oc 1/v/t, SS 2/ S5 e — 0, indicating that f (a4 pest) converges to f*. [
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Polyak step size (Polyak )

If f* is known, one can come up with optimal step sizes

e = f(xt) —2f*
lg:113

which is obtained by minimizing the intermediate result of progress in one iteration
from the proof.

Applying this step size will give
f* < %
VT

which achives the optimal result; the convergence rate is still O(1/v/T).

f(l't,best) -

» A simple variant can get near optimal rates without knowledge of f* (Hazan and
Kakade ).
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On the subgradient method

While subgradient method can be applied nearly all non-smooth convex optimization,
it is very slow (O(1/v/1)).

» This is an optimal rate, and it does not improve with a momentum scheme.

Instead we could make use of some structure of the problem, which could give us
better convergence rates (next time).
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Any questions?
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