Convex Optimization

Part 2: Subgradient method $(2 / 2)$

Namhoon Lee
POSTECH
28 Sep 2022

Admin

Assignment 1 is being graded.

- The result will be uploaded on PLMS.
- You can check your result with TAs until Assignment 2 is due.

Assignment 2 is out already.

- Due by Wed 19 Oct.

No class on Mon 10 Oct.
Be reminded of pop quizzes.

Least squares with l_{1}-regularization

Given some data $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}$ and linear prediction model $\hat{y}=\beta^{\top} x$, consider the least squares with l_{1}-regularization

$$
\min _{\beta} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

where λ is the regularization coefficient.

- If λ is sufficiently large, the solution can be sparse (useful for feature selection).
- Why? How does it compare to l_{2}-regularization?
- Optimality condition?

Figure: l_{2} vs l_{1} regularization. Figure taken from Bishop.

Apply the optimality condition to both cases
For l_{2}-regularization

$$
0=-X_{i}^{\top}(y-X \beta)+\lambda \beta_{i}
$$

- It is unlikely to be satisfied for $\beta_{i}=0$.

For l_{1}-regularization

$$
0 \in-X_{i}^{\top}(y-X \beta)+\lambda[-1,1]
$$

- The chance is better now since $\left|X_{i}^{\top}(y-X \beta)\right| \in \lambda$ is more likely (with large λ).

To complete, the optimality condition for lasso

$$
\begin{aligned}
0 \in \partial\left(\frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right) & \Longleftrightarrow 0 \in-X^{\top}(y-X \beta)+\lambda \partial\|\beta\|_{1} \\
& \Longleftrightarrow \beta=\left(X^{\top} X\right)^{-1}\left(X^{\top} y-\lambda z\right)
\end{aligned}
$$

where $z=\partial\|\beta\|_{1}$, i.e.,

$$
z_{i}= \begin{cases}\operatorname{sign}\left(\beta_{i}\right) & \text { if } \beta_{i} \neq 0 \\ \in[-1,1] & \text { if } \beta_{i}=0\end{cases}
$$

- This does not provide the optimal solution; rather it is a characterization; but still it could be useful.

Subgradient method

Consider minimizing f that is convex but not necessarily differentiable.

Subgradient method

Start with some initial point x_{1}, repeat the following update step iteratively

$$
x_{t+1}=x_{t}-\eta_{t} g_{t}
$$

and stop at some point. Here $g_{t} \in \partial f\left(x_{t}\right)$, i.e., any subgradient of f at x_{t}.

- One can keep $x_{t, \text { best }}$ instead of x_{T} because subgradient method is not necessarily a descent method (hence the name); i.e., it can increase the objective (why?).

$$
f(x)=|x|
$$

$$
f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+4\left|x_{2}\right|
$$

Step size

Fixed step size

- $\eta_{t}=\bar{\eta}$ for all $t=1,2, \ldots$

Diminishing step size

- $\eta_{t} \rightarrow 0$ as $t \rightarrow \infty$; specifically η_{t} under the following conditions

$$
\sum_{t=1}^{\infty} \eta_{t}=\infty \quad \text { and } \quad \sum_{t=1}^{\infty} \eta_{t}^{2}<\infty
$$

i.e., η_{t} decreases to 0 but not too fast.

Optimal step size

- $\eta_{t}=\left(f\left(x_{t}\right)-f^{*}\right) /\left\|g_{t}\right\|_{2}^{2}$

Convergence analysis

Theorem

For f convex and Lipschitz continuous with parameter $G>0$ (or bounded subgradient), subgradient method with step size η satisfies

$$
f\left(x_{t, \text { best }}\right)-f^{*} \leq \frac{R^{2}}{2 \eta T}+\frac{G^{2} \eta}{2}
$$

where $R=\left\|x_{1}-x^{*}\right\|_{2}$.

- For fixed step size it fails to converge to 0 error (i.e., $G^{2} \eta / 2$-suboptimal).
- For diminishing step size $\eta \propto 1 / \sqrt{t}$, we can get $\mathcal{O}(1 / \sqrt{T})$ convergence rate which is slower than gradient descent (it makes sense why? smaller step sizes).
- It does not accelerate even if we add momentum (later).

We prove for a general case in which subgradient method runs with step size η_{t} that decreases to 0 as t increases; i.e., as $\eta_{t} \rightarrow 0$ as $t \rightarrow \infty$ and further $\sum_{t=1}^{\infty} \eta_{t}=\infty$.
Proof.
Following the similar convergence proof for gradient descent and using the bounded gradient assumption we arrive

$$
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq\left\|x_{t}-x^{*}\right\|_{2}^{2}-2 \eta_{t}\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right)+\eta_{t}^{2} G^{2}
$$

Summing for T iterations, lower-bounding $f\left(x_{t}\right)$ with $f\left(x_{t, \text { best }}\right)$, and rearranging terms

$$
f\left(x_{t, \text { best }}\right)-f^{*} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{T} \eta_{t}^{2}}{2 \sum_{t=1}^{T} \eta_{t}}
$$

For $\eta_{t} \propto 1 / \sqrt{t}, \sum_{t=1}^{T} \eta_{t}^{2} / \sum_{t=1}^{T} \eta_{t} \rightarrow 0$, indicating that $f\left(x_{t, \text { best }}\right)$ converges to f^{*}.

Polyak step size (Polyak 1987)

If f^{*} is known, one can come up with optimal step sizes

$$
\eta_{t}=\frac{f\left(x_{t}\right)-f^{*}}{\left\|g_{t}\right\|_{2}^{2}}
$$

which is obtained by minimizing the intermediate result of progress in one iteration from the proof.

Applying this step size will give

$$
f\left(x_{t, \text { best }}\right)-f^{*} \leq \frac{R G}{\sqrt{T}}
$$

which achives the optimal result; the convergence rate is still $\mathcal{O}(1 / \sqrt{T})$.

- A simple variant can get near optimal rates without knowledge of f^{*} (Hazan and Kakade 2019).

On the subgradient method

While subgradient method can be applied nearly all non-smooth convex optimization, it is very slow $(\mathcal{O}(1 / \sqrt{t}))$.

- This is an optimal rate, and it does not improve with a momentum scheme.

Instead we could make use of some structure of the problem, which could give us better convergence rates (next time).

Any questions?

