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Projected gradient method

Consider constrained minimization problem

min f(z)

x

s.t.zeC
where f is convex and smooth, and C is convex.
Projected gradient method repeats the following update

ry1 = Pz — nVf(x))

where Pc is the projection operator onto the set C.

We can treat projection as a special case of proximal operation. However, the
projection step may not always be easy.

» local quadratic expansion of f
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Frank-Wolfe method
Frank-Wolfe method (conditional gradient method) uses a local linear expansion of f
yi € argmin V f(z;) 'y
yeC
Tep1 = (1 — )z + vy

where default step size is v = 2/(t +1) for t =1,2,....

» Unlike projected gradient method, there is no projection; instead Frank-Wolfe
minimizes a linear function.

» When the set constraint is easy, then Frank-Wolfe can be more efficient than
projected gradient method; for instance, C is convex polytope, the minimizer is
always found in one of the vertices.

» The update is always in the feasible set; for 0 < v, < 1 we have z; € C by
convexity.
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ye € argmin V f(z) "y
yeC

Tepr = (1 =) Te + eye

Yt

» moving less and less in the direction of the linearization minimizer as the
algorithm proceeds
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D

Figure: The algorithm considers the linearization of the objective function and moves towards
its minimizer; figure from (Jaggi 2013)
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Norm constraint

Consider C = {x : ||z|| <t} for an abitrary norm || - ||. Then

y € argmin V f(z;) 'y
lyl<t

— . (arg max Vf(ﬂ?t)TZ/>
llyll<1

= —t-0||Vf(xe)|«

where || - ||« denotes the corresponding dual norm.

> If we know how to compute subgradients of the dual norm, then we can easily
perform Frank-Wolfe steps.

> A key to Frank-Wolfe: this can often be simpler or cheaper than projection onto
C={z: |z <t}
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Example

Consider minimizing with 1-norm constraint
min f(x)
x
s.t x| <t
We have y; = —t0||V f(x¢)||co, and thus Frank-Wolf update becomes
ir € argmax |V f(zy))|
i=1,...,d

T = (1 — )z — et - sign (Vi f(z1)) - €,

» Special case of coordinate descent (update one coordinate at a time)

» Simpler than projection onto 1-norm ball
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Convergence analysis

Theorem
Let f be a convex and [3-smooth function with respect to some norm || - ||,
R =sup, yec|l* —yll, and v = 2/(t + 1) fort > 1. Then for any t > 2, one has

28R?
T+1

flzr) = f(a") <

P> same convergence rate as gradient descent for smooth function

» smoothness measured in arbitrary norm || - || (“norm-free”)
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Proof.

Using B-smoothness (for arbitrary norms), the definition of the algorithm, and the

convexity of f

F@e) — f@e) < V(@) (@41 — 2) + éHﬂ?tH — zy||?

S%VNM(M~M+BﬁW

<y V() (2" — ) + 5%2]%2
« 5
< Y(f(@*) = f(ze) + 577 R
Rewriting this inequality in terms of &; = f(x¢) — f(«*) one obtains

B
SR’

Otr1 < (1 —y)de + 5
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We prove i1 < by induction. First we show that the base case (7" = 2) holds

T+1

true, ie., 6o < BR2 With t =1, 4 = 1, and we get from the previous inquality that
. p
flws) = fo1) < f@*) = o) + 5 B2
2
= 6y = f(x2) — f(z¥) < gRQ < gﬁRQ

Next assume o < %ﬁfl for T' = t, and show it holds true for T'=1 + 1

01 < (1 —y1)0¢ + B% R?
2 \28R% B/ 2 \? .,
<(1- = Ly
( t+1>t+1+2<t+1>R
_ 2tBR?
(t+1)2

We finish the proof by noting that ¢/(t + 1) < 1. O
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Any questions?
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