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Projected gradient method
Consider constrained minimization problem

min
x

f(x)

s. t. x ∈ C

where f is convex and smooth, and C is convex.

Projected gradient method repeats the following update

xt+1 = PC(xt − η∇f(xt))

where PC is the projection operator onto the set C.

We can treat projection as a special case of proximal operation. However, the
projection step may not always be easy.

I local quadratic expansion of f
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Frank-Wolfe method

Frank-Wolfe method (conditional gradient method) uses a local linear expansion of f

yt ∈ argmin
y∈C

∇f(xt)>y

xt+1 = (1− γt)xt + γtyt

where default step size is γt = 2/(t+ 1) for t = 1, 2, . . ..

I Unlike projected gradient method, there is no projection; instead Frank-Wolfe
minimizes a linear function.

I When the set constraint is easy, then Frank-Wolfe can be more efficient than
projected gradient method; for instance, C is convex polytope, the minimizer is
always found in one of the vertices.

I The update is always in the feasible set; for 0 ≤ γt ≤ 1 we have xt ∈ C by
convexity.
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yt ∈ argmin
y∈C

∇f(xt)>y

xt+1 = (1− γt)xt + γtyt

I moving less and less in the direction of the linearization minimizer as the
algorithm proceeds
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Figure: The algorithm considers the linearization of the objective function and moves towards
its minimizer; figure from (Jaggi 2013)
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Norm constraint

Consider C = {x : ‖x‖ ≤ t} for an abitrary norm ‖ · ‖. Then

yt ∈ argmin
‖y‖≤t

∇f(xt)>y

= −t ·
(
argmax
‖y‖≤1

∇f(xt)>y
)

= −t · ∂‖∇f(xt)‖∗

where ‖ · ‖∗ denotes the corresponding dual norm.

I If we know how to compute subgradients of the dual norm, then we can easily
perform Frank-Wolfe steps.

I A key to Frank-Wolfe: this can often be simpler or cheaper than projection onto
C = {x : ‖x‖ ≤ t}
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Example

Consider minimizing with 1-norm constraint

min
x

f(x)

s. t. ‖x‖1 ≤ t

We have yt = −t∂‖∇f(xt)‖∞, and thus Frank-Wolf update becomes

it ∈ argmax
i=1,...,d

|∇if(xt))|

xt+1 = (1− γt)xt − γtt · sign
(
∇itf(xt)

)
· eit

I Special case of coordinate descent (update one coordinate at a time)

I Simpler than projection onto 1-norm ball
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Convergence analysis

Theorem
Let f be a convex and β-smooth function with respect to some norm ‖ · ‖,
R = supx,y∈C ‖x− y‖, and γt = 2/(t+ 1) for t ≥ 1. Then for any t ≥ 2, one has

f(xT )− f(x∗) ≤
2βR2

T + 1

I same convergence rate as gradient descent for smooth function

I smoothness measured in arbitrary norm ‖ · ‖ (“norm-free”)
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Proof.
Using β-smoothness (for arbitrary norms), the definition of the algorithm, and the
convexity of f

f(xt+1)− f(xt) ≤ ∇f(xt)>(xt+1 − xt) +
β

2
‖xt+1 − xt‖2

≤ γt∇f(xt)>(yt − xt) +
β

2
γ2tR

2

≤ γt∇f(xt)>(x∗ − xt) +
β

2
γ2tR

2

≤ γt(f(x∗)− f(xt)) +
β

2
γ2tR

2

Rewriting this inequality in terms of δt = f(xt)− f(x∗) one obtains

δt+1 ≤ (1− γt)δt +
β

2
γ2tR

2
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We prove δT ≤ 2βR2

T+1 by induction. First we show that the base case (T = 2) holds

true, i.e., δ2 ≤ 2
3βR

2. With t = 1, γt = 1, and we get from the previous inquality that

f(x2)− f(x1) ≤ f(x∗)− f(x1) +
β

2
R2

⇐⇒ δ2 = f(x2)− f(x∗) ≤
β

2
R2 ≤ 2

3
βR2

Next assume δT ≤ 2βR2

T+1 for T = t, and show it holds true for T = t+ 1

δt+1 ≤ (1− γt)δt +
β

2
γ2tR

2

≤
(
1− 2

t+ 1

)
2βR2

t+ 1
+
β

2

(
2

t+ 1

)2

R2

=
2tβR2

(t+ 1)2

We finish the proof by noting that t/(t+ 1) ≤ 1.
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Any questions?
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