Convex Optimization

Part 3: Mirror descent

Namhoon Lee
POSTECH
17 Oct 2022

Admin

Midterm

- result: 52.9 (avg) / 15.2 (std)
- check with TAs during office hours this week if you want

On dimension independent results

Consider constrained minimization problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } x \in \mathbb{C}
\end{aligned}
$$

For $f G$-Lipschitz, projected subgradient method with diminishing step size satisfies

$$
f\left(x_{t}, \text { best }\right)-f\left(x^{*}\right) \leq \frac{R G}{\sqrt{T}}
$$

- the bound has no dependence on n ("dimension free")
- in fact G is w.r.t. $\|\cdot\|_{2}$ and can be dimension dependent
- mirror descent aims to improve based upon this point

Gradient descent

Gradient descent as finding minimizer of function approximation

$$
\begin{aligned}
x^{+} & =\underset{u}{\arg \min } f(x)+\nabla f(x)^{\top}(u-x)+\frac{1}{2 \eta}\|u-x\|_{2}^{2} \\
& =\underset{u}{\arg \min } \eta \nabla f(x)^{\top} u+\underbrace{\frac{1}{2}\|u-x\|_{2}^{2}}_{\text {prox term }}
\end{aligned}
$$

- find u while staying close to x as measured in the Euclidean distance
- different distance measure (or geometry) gives a rise to mirror descent

Proximal gradient method

Proximal gradient method for minimizing composite function $f(x)=g(x)+h(x)$

$$
\begin{aligned}
x_{t+1} & =\operatorname{prox}_{\eta h}\left(x_{t}-\eta \nabla g\left(x_{t}\right)\right) \\
& =\underset{u}{\arg \min }\left(h(u)+g\left(x_{t}\right)+\nabla g\left(x_{t}\right)^{\top}\left(u-x_{t}\right)+\frac{1}{2 \eta}\left\|u-x_{t}\right\|_{2}^{2}\right)
\end{aligned}
$$

Quadratic term represents

- a penalty that forces x_{t+1} to be close to x_{t}, where linearization of g is accurate
- an approximation of the erorr term in the linearization of g at x_{t}

Generalized proximal gradient method

Replace $\frac{1}{2}\|u-x\|_{2}^{2}$ with a generalized distance $D(u, x)$

$$
x_{t+1}=\underset{u}{\arg \min }\left(h(u)+g\left(x_{t}\right)+\nabla g\left(x_{t}\right)^{\top}\left(u-x_{t}\right)+\frac{1}{\eta} D\left(u, x_{t}\right)\right)
$$

Potential benefits

- "pre-conditioning" : use a more accurate model of $g(u)$ around x, ideally

$$
\frac{1}{\eta} D\left(u, x_{t}\right) \approx g(u)-g\left(x_{t}\right)-\nabla g\left(x_{t}\right)^{\top}\left(u-x_{t}\right)
$$

- make the generalized proximal mapping (minimizer u) easier to compute

Bregman distance

Definition

$$
D_{\phi}(x, y)=\phi(x)-\phi(y)-\nabla \phi(y)^{\top}(x-y)
$$

- ϕ is convex and continuously differentiable on $\operatorname{int}(\operatorname{dom} \phi)$
- ϕ is called kernel function or distance-generating function

Read "distance between x and y as measured by function ϕ " or "divergence from x to y with respect to function $\phi "$

Illustration

Immediate properties

Bregman distance

$$
D_{\phi}(x, y)=\phi(x)-\phi(y)-\nabla \phi(y)^{\top}(x-y)
$$

- $D_{\phi}(x, y)$ is convex in x for fixed y
- $D_{\phi}(x, y) \geq 0$ with equality if $x=y$
- if ϕ is strictly convex, then $D_{\phi}(x, y)=0$ only if $x=y$
- $D_{\phi}(x, y) \neq D_{\phi}(y, x)$ in general
to emphasize lack of symmetry, D is also called a directed distance or divergence

Examples

ϕ squared 2-norm

$$
\phi(x)=\frac{1}{2}\|x\|_{2}^{2}
$$

Bregman distance

$$
D_{\phi}(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}
$$

i.e., squared Euclidean distance

- reduces to gradient descent

Examples

ϕ general quadratic

$$
\phi(x)=\frac{1}{2} x^{\top} A x
$$

where A is symmetric positive (semi)definite
Bregman distance

$$
D_{\phi}(x, y)=\frac{1}{2}(x-y)^{\top} A(x-y)
$$

i.e., general quadratic kernel

- leads to pre-conditioning

Examples

ϕ unnormalized negative entropy

$$
\phi(x)=\sum_{i=1}^{n} x_{i} \log x_{i}-x_{i}
$$

Bregman distance

$$
D_{\phi}(x, y)=\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}}-x_{i}+y_{i}
$$

i.e., unnormalized relative entropy or KL divergence

Three-point identity

For all $x \in \operatorname{dom} \phi$ and $y, z \in \operatorname{int}(\operatorname{dom} \phi)$

$$
D_{\phi}(x, z)=D_{\phi}(x, y)+D_{\phi}(y, z)+(\phi(y)-\phi(z))^{\top}(x-y)
$$

- proof is done straightforward by substituting the definition of D_{ϕ}

Strongly convex kernel

We will sometimes assume that ϕ is strongly convex

$$
\phi(x) \geq \phi(y)+\nabla \phi(y)^{\top}(x-y)+\frac{\alpha}{2}\|x-y\|^{2}
$$

- $\alpha>0$ is strong convexity constant of ϕ for the norm $\|\cdot\|$
- for twice differentiable ϕ, this is equivalent to

$$
\nabla^{2} \phi(x) \succeq \alpha I
$$

- strong convexity of ϕ implies that

$$
D_{\phi}(x, y)=\phi(x)-\phi(y)-\nabla \phi(y)^{\top}(x-y) \geq \frac{\alpha}{2}\|x-y\|^{2}
$$

Regularization with Bregman distance

For given $y \in \operatorname{int}(\operatorname{dom} \phi)$ and convex f, consider

$$
\min f(x)+D_{\phi}(x, y)
$$

- equivalently, minimize $f(x)+\phi(x)-\nabla \phi(y)^{\top} x$
- feasible set is $\operatorname{dom} f \cap \operatorname{dom} \phi$

Optimality condition: $\hat{x} \in \operatorname{dom} f \cap \operatorname{int}(\operatorname{dom} \phi)$ is optimal if and only if

$$
\nabla \phi(y)-\nabla \phi(\hat{x}) \in \partial f(\hat{x})
$$

Mirror descent

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathbb{C}
\end{aligned}
$$

- f is a convex function, \mathbb{C} is a convex subset of $\operatorname{dom} f$
- we assume f is subdifferentiable on C

Algorithm: start with x_{1} and repeat

$$
x_{t+1}=\underset{x \in \mathbb{C}}{\arg \min } \eta g_{t}^{\top} x+D_{\phi}\left(x, x_{t}\right), \quad t=1,2, \ldots
$$

where $g_{t} \in \partial f\left(x_{t}\right)$

Mirror descent with quadratic kernel

$$
x_{t+1}=\underset{x \in \mathbb{C}}{\arg \min } \eta g_{t}^{\top} x+D_{\phi}\left(x, x_{t}\right)
$$

for $D_{\phi}(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}$, this is the projected subgradient method

$$
\begin{aligned}
x_{t+1} & =\underset{x \in \mathbb{C}}{\arg \min } \eta g_{t}^{\top} x+\frac{1}{2}\left\|x-x_{t}\right\|_{2}^{2} \\
& =\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{t}+\eta g_{t}\right\|_{2}^{2} \\
& =\mathrm{P}_{\mathbb{C}}\left(x_{t}-\eta g_{t}\right)
\end{aligned}
$$

Mirror map view

Mirror descent (without constraint for simplicity)

$$
x_{t+1}=\underset{x}{\arg \min } \eta \nabla f\left(x_{t}\right)^{\top} x+D_{\phi}\left(x, x_{t}\right)
$$

Applying optimality condition

$$
\nabla \phi\left(x_{t+1}\right)=\nabla \phi\left(x_{t}\right)-\eta \nabla f\left(x_{t}\right)
$$

Taking $\nabla \phi$ as an operator (or mapping)

$$
x_{t+1}=(\nabla \phi)^{-1}\left(\nabla \phi\left(x_{t}\right)-\eta \nabla f\left(x_{t}\right)\right)
$$

With Bregman projection

$$
y_{t+1}=(\nabla \phi)^{-1}\left(\nabla \phi\left(x_{t}\right)-\eta \nabla f\left(x_{t}\right)\right), \quad x_{t+1}=\underset{x \in \mathcal{X}}{\arg \min } D_{\phi}\left(x, y_{t+1}\right)
$$

Figure: Illustration of mirror descent; figure from Bubeck

View ϕ as "mirror map" and $\nabla \phi(x)$ as the point mapped from primal to dual space (Nemirovskij and Yudin 1983)

Running examples

for $\phi(x)=\frac{1}{2}\|x\|_{2}^{2}, \nabla \phi(x)=x$, so we get

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

- gradient descent
for $\phi(x)=\sum_{i=1}^{n} x_{i} \log x_{i}-x_{i}, \nabla \phi(x)=\left(\log x_{1}, \ldots, \log x_{n}\right)$, so we get

$$
\left(x_{t+1}\right)_{i}=\left(x_{t}\right)_{i} \exp \left(-\eta\left(\nabla f\left(x_{t}\right)\right)_{i}\right)
$$

- Hedge algorithm (with normalization step for constrained case)

Dual norm

Definition (Dual norm)

Let $\|\cdot\|$ be some norm. Its dual norm is defined as

$$
\|x\|_{*}=\sup _{\|y\| \leq 1} y^{\top} x
$$

- dual norm of 2 -norm is 2 -norm itself ("self-dual")
- dual norm of p-norm is q-norm where $1 / p+1 / q=1$
- dual of dual norm is the original norm itself $\left(\left(\|\cdot\|_{*}\right)_{*}=\|\cdot\|\right)$

Cauchy-Schwarz for general norms

For $x, y \in \mathbb{R}^{n}$, we have

$$
\langle x, y\rangle \leq\|x\|\|y\|_{*}
$$

Proof.
Dividing both sides by $\|x\|$ yields $\langle x /\|x\|, y\rangle \leq\|y\|_{*}$. The inequality holds by definition of dual norm and by noting that $\|x /\| x\|\|=1$ for $\| x \| \neq 0$.

Convergence analysis

Theorem

Let f be convex and L-Lipschitz w.r.t. $\|\cdot\|$. Let ϕ be ρ-strongly convex with respect to $\|\cdot\|$. Mirror descent with $\eta=\frac{R}{L} \sqrt{\frac{2 \rho}{T}}$ and $R^{2} \geq D_{\phi}\left(x, x^{*}\right)$ satisfies

$$
f\left(\frac{1}{T} \sum_{i=1}^{T} x_{t}\right)-f\left(x^{*}\right) \leq R L \sqrt{\frac{2}{\rho T}}
$$

- $1 / \sqrt{T}$ same dependence on T for subgradient
- L is w.r.t. $\|\cdot\|$ not $\|\cdot\|_{2}$

Proof.

We start with convexity of f and some algebraic manipulation

$$
\begin{aligned}
\eta\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right) \leq & \eta\left(g_{t}^{\top}\left(x_{t}-x^{*}\right)\right) \\
= & \underbrace{\left(\nabla \phi\left(x_{t}\right)-\nabla \phi\left(x_{t+1}\right)-\eta g_{t}\right)^{\top}\left(x^{*}-x_{t+1}\right)}_{A} \\
& +\underbrace{\left(\nabla \phi\left(x_{t+1}\right)-\nabla \phi\left(x_{t}\right)\right)^{\top}\left(x^{*}-x_{t+1}\right)}_{B}+\underbrace{\eta g_{t}^{\top}\left(x_{t}-x_{t+1}\right)}_{C}
\end{aligned}
$$

We will bound each term A, B, C
first prove $A \leq 0$

$$
A=\left(\nabla \phi\left(x_{t}\right)-\nabla \phi\left(x_{t+1}\right)-\eta g_{t}\right)^{\top}\left(x^{*}-x_{t+1}\right)
$$

recall mirror descent

$$
x_{t+1}=\underset{x \in \mathbb{C}}{\arg \min } \eta g_{t}^{\top} x+D_{\phi}\left(x, x_{t}\right)
$$

recall optimality condition for convex optimization with set constraint

$$
0 \in \eta g_{t}+\nabla \phi\left(x_{t+1}\right)-\nabla \phi\left(x_{t}\right)+\mathcal{N}_{\mathbb{C}}\left(x_{t+1}\right)
$$

by the definition of normal cone

$$
\left(\eta g_{t}+\nabla \phi\left(x_{t+1}\right)-\nabla \phi\left(x_{t}\right)\right)^{\top}\left(x-x_{t+1}\right) \geq 0 \quad \forall x \in \mathbb{C}
$$

therefore

$$
A \leq 0
$$

we can express B as follows by the definition of Bregman distance

$$
\begin{aligned}
B & =\left(\nabla \phi\left(x_{t+1}\right)-\nabla \phi\left(x_{t}\right)\right)^{\top}\left(x^{*}-x_{t+1}\right) \\
& =D_{\phi}\left(x^{*}, x_{t}\right)-D_{\phi}\left(x_{t+1}, x_{t}\right)-D_{\phi}\left(x^{*}, x_{t+1}\right)
\end{aligned}
$$

next bound C

$$
C=\eta g_{t}^{\top}\left(x_{t}-x_{t+1}\right) \leq \frac{1}{2 \rho} \eta^{2}\left\|g_{t}\right\|_{*}^{2}+\frac{\rho}{2}\left\|x_{t}-x_{t+1}\right\|^{2}
$$

where we use Hölder's inequality

$$
u^{\top} v \leq \frac{1}{2 \alpha}\|u\|_{*}^{2}+\frac{\alpha}{2}\|v\|^{2}
$$

- generalization of completing square to non-Euclidean geometry
put $A B C$ together

$$
\begin{aligned}
\eta\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right) \leq & D_{\phi}\left(x^{*}, x_{t}\right)-D_{\phi}\left(x_{t+1}, x_{t}\right)-D_{\phi}\left(x^{*}, x_{t+1}\right) \\
& +\frac{1}{2 \rho} \eta^{2}\left\|g_{t}\right\|_{*}^{2}+\frac{\rho}{2}\left\|x_{t}-x_{t+1}\right\|^{2}
\end{aligned}
$$

use strong convexity of ϕ (i.e. $\left.D_{\phi}\left(x_{t+1}, x_{t}\right) \geq(\rho / 2)\left\|x_{t+1}-x_{t}\right\|^{2}\right)$

$$
\eta\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right) \leq \underbrace{D_{\phi}\left(x^{*}, x_{t}\right)-D_{\phi}\left(x^{*}, x_{t+1}\right)}_{\text {telescoping }}+\frac{1}{2 \rho} \eta^{2}\left\|g_{t}\right\|_{*}^{2}
$$

sum for T iterations and up to trivial computation

$$
f\left(\frac{1}{T} \sum_{i=1}^{T} x_{t}\right)-f\left(x^{*}\right) \leq \frac{D_{\phi}\left(x^{*}, x_{1}\right)}{\eta T}+\frac{\eta L^{2}}{2 \rho}
$$

Simplex setup

For minimizing on simplex constraint $\mathbb{C}=\Delta_{n}=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$, mirror descent with ϕ the negative entropy achieves a rate of convergence of order $\sqrt{\frac{\log n}{T}}$ whereas subgradient method only achieves $\sqrt{\frac{n}{t}}$.
For ϕ the negative entropy, we can show that ϕ is 1 -strongly convex w.r.t. $\|\cdot\|_{1}$ (Pinsker's inequality).

Any questions?

References I

Nemirovskij, Arkadij Semenovič and David Borisovich Yudin (1983). "Problem complexity and method efficiency in optimization". In: Wiley-Interscience.

