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Admin

Midterm

I result: 52.9 (avg) / 15.2 (std)

I check with TAs during office hours this week if you want
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On dimension independent results

Consider constrained minimization problem

min
x∈Rn

f(x)

s. t. x ∈ C

For f G-Lipschitz, projected subgradient method with diminishing step size satisfies

f(xt, best)− f(x∗) ≤ RG√
T

I the bound has no dependence on n (“dimension free”)

I in fact G is w.r.t. ‖ · ‖2 and can be dimension dependent

I mirror descent aims to improve based upon this point
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Gradient descent

Gradient descent as finding minimizer of function approximation

x+ = arg min
u

f(x) +∇f(x)>(u− x) +
1

2η
‖u− x‖22

= arg min
u

η∇f(x)>u+
1

2
‖u− x‖22︸ ︷︷ ︸
prox term

I find u while staying close to x as measured in the Euclidean distance

I different distance measure (or geometry) gives a rise to mirror descent
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Proximal gradient method

Proximal gradient method for minimizing composite function f(x) = g(x) + h(x)

xt+1 = proxηh(xt − η∇g(xt))

= arg min
u

(
h(u) + g(xt) +∇g(xt)

>(u− xt) +
1

2η
‖u− xt‖22

)
Quadratic term represents

I a penalty that forces xt+1 to be close to xt, where linearization of g is accurate

I an approximation of the erorr term in the linearization of g at xt

5 / 28



Generalized proximal gradient method

Replace 1
2‖u− x‖

2
2 with a generalized distance D(u, x)

xt+1 = arg min
u

(
h(u) + g(xt) +∇g(xt)

>(u− xt) +
1

η
D(u, xt)

)
Potential benefits

I “pre-conditioning”: use a more accurate model of g(u) around x, ideally

1

η
D(u, xt) ≈ g(u)− g(xt)−∇g(xt)

>(u− xt)

I make the generalized proximal mapping (minimizer u) easier to compute
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Bregman distance
Definition

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)>(x− y)

I φ is convex and continuously differentiable on int(domφ)
I φ is called kernel function or distance-generating function

Read “distance between x and y as measured by function φ” or “divergence from x
to y with respect to function φ”

Illustration
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Immediate properties

Bregman distance

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)>(x− y)

I Dφ(x, y) is convex in x for fixed y

I Dφ(x, y) ≥ 0 with equality if x = y

I if φ is strictly convex, then Dφ(x, y) = 0 only if x = y

I Dφ(x, y) 6= Dφ(y, x) in general

to emphasize lack of symmetry, D is also called a directed distance or divergence
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Examples

φ squared 2-norm

φ(x) =
1

2
‖x‖22

Bregman distance

Dφ(x, y) =
1

2
‖x− y‖22

i.e., squared Euclidean distance

I reduces to gradient descent
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Examples

φ general quadratic

φ(x) =
1

2
x>Ax

where A is symmetric positive (semi)definite

Bregman distance

Dφ(x, y) =
1

2
(x− y)>A(x− y)

i.e., general quadratic kernel

I leads to pre-conditioning
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Examples

φ unnormalized negative entropy

φ(x) =

n∑
i=1

xi log xi − xi

Bregman distance

Dφ(x, y) =

n∑
i=1

xi log
xi
yi
− xi + yi

i.e., unnormalized relative entropy or KL divergence
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Three-point identity

For all x ∈ domφ and y, z ∈ int(domφ)

Dφ(x, z) = Dφ(x, y) +Dφ(y, z) + (φ(y)− φ(z))>(x− y)

I proof is done straightforward by substituting the definition of Dφ
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Strongly convex kernel

We will sometimes assume that φ is strongly convex

φ(x) ≥ φ(y) +∇φ(y)>(x− y) +
α

2
‖x− y‖2

I α > 0 is strong convexity constant of φ for the norm ‖ · ‖
I for twice differentiable φ, this is equivalent to

∇2φ(x) � αI

I strong convexity of φ implies that

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)>(x− y) ≥ α

2
‖x− y‖2
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Regularization with Bregman distance

For given y ∈ int(domφ) and convex f , consider

min f(x) +Dφ(x, y)

I equivalently, minimize f(x) + φ(x)−∇φ(y)>x

I feasible set is dom f ∩ domφ

Optimality condition: x̂ ∈ dom f ∩ int(domφ) is optimal if and only if

∇φ(y)−∇φ(x̂) ∈ ∂f(x̂)
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Mirror descent

min f(x)

s. t. x ∈ C

I f is a convex function, C is a convex subset of dom f

I we assume f is subdifferentiable on C

Algorithm: start with x1 and repeat

xt+1 = arg min
x∈C

ηg>t x+Dφ(x, xt) , t = 1, 2, . . .

where gt ∈ ∂f(xt)
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Mirror descent with quadratic kernel

xt+1 = arg min
x∈C

ηg>t x+Dφ(x, xt)

for Dφ(x, y) = 1
2‖x− y‖

2
2, this is the projected subgradient method

xt+1 = arg min
x∈C

ηg>t x+
1

2
‖x− xt‖22

= arg min
x∈C

1

2
‖x− xt + ηgt‖22

= PC(xt − ηgt)
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Mirror map view

Mirror descent (without constraint for simplicity)

xt+1 = arg min
x

η∇f(xt)
>x+Dφ(x, xt)

Applying optimality condition

∇φ(xt+1) = ∇φ(xt)− η∇f(xt)

Taking ∇φ as an operator (or mapping)

xt+1 = (∇φ)−1(∇φ(xt)− η∇f(xt))
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With Bregman projection

yt+1 = (∇φ)−1(∇φ(xt)− η∇f(xt)) , xt+1 = arg min
x∈X

Dφ(x, yt+1)

Figure: Illustration of mirror descent; figure from Bubeck

View φ as “mirror map” and ∇φ(x) as the point mapped from primal to dual space
(Nemirovskij and Yudin 1983)
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Running examples

for φ(x) = 1
2‖x‖

2
2, ∇φ(x) = x, so we get

xt+1 = xt − η∇f(xt)

I gradient descent

for φ(x) =
∑n

i=1 xi log xi − xi, ∇φ(x) = (log x1, . . . , log xn), so we get

(xt+1)i = (xt)i exp
(
− η(∇f(xt))i

)
I Hedge algorithm (with normalization step for constrained case)
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Dual norm

Definition (Dual norm)

Let ‖ · ‖ be some norm. Its dual norm is defined as

‖x‖∗ = sup
‖y‖≤1

y>x

I dual norm of 2-norm is 2-norm itself (“self-dual”)

I dual norm of p-norm is q-norm where 1/p+ 1/q = 1

I dual of dual norm is the original norm itself ((‖ · ‖∗)∗ = ‖ · ‖)
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Cauchy-Schwarz for general norms

For x, y ∈ Rn, we have
〈x, y〉 ≤ ‖x‖‖y‖∗

Proof.
Dividing both sides by ‖x‖ yields 〈x/‖x‖, y〉 ≤ ‖y‖∗. The inequality holds by definition
of dual norm and by noting that ‖x/‖x‖‖ = 1 for ‖x‖ 6= 0.
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Convergence analysis

Theorem
Let f be convex and L-Lipschitz w.r.t. ‖ · ‖. Let φ be ρ-strongly convex with respect to

‖ · ‖. Mirror descent with η = R
L

√
2ρ
T and R2 ≥ Dφ(x, x∗) satisfies

f

(
1

T

T∑
i=1

xt

)
− f(x∗) ≤ RL

√
2

ρT

I 1/
√
T same dependence on T for subgradient

I L is w.r.t. ‖ · ‖ not ‖ · ‖2
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Proof.
We start with convexity of f and some algebraic manipulation

η(f(xt)− f(x∗)) ≤ η(g>t (xt − x∗))
= (∇φ(xt)−∇φ(xt+1)− ηgt)>(x∗ − xt+1)︸ ︷︷ ︸

A

+ (∇φ(xt+1)−∇φ(xt))
>(x∗ − xt+1)︸ ︷︷ ︸

B

+ ηg>t (xt − xt+1)︸ ︷︷ ︸
C

We will bound each term A,B,C
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first prove A ≤ 0

A = (∇φ(xt)−∇φ(xt+1)− ηgt)>(x∗ − xt+1)

recall mirror descent
xt+1 = arg min

x∈C
ηg>t x+Dφ(x, xt)

recall optimality condition for convex optimization with set constraint

0 ∈ ηgt +∇φ(xt+1)−∇φ(xt) +NC(xt+1)

by the definition of normal cone

(ηgt +∇φ(xt+1)−∇φ(xt))
>(x− xt+1) ≥ 0 ∀x ∈ C

therefore
A ≤ 0
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we can express B as follows by the definition of Bregman distance

B = (∇φ(xt+1)−∇φ(xt))
>(x∗ − xt+1)

= Dφ(x∗, xt)−Dφ(xt+1, xt)−Dφ(x∗, xt+1)

next bound C

C = ηg>t (xt − xt+1) ≤
1

2ρ
η2‖gt‖2∗ +

ρ

2
‖xt − xt+1‖2

where we use Hölder’s inequality

u>v ≤ 1

2α
‖u‖2∗ +

α

2
‖v‖2

I generalization of completing square to non-Euclidean geometry
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put A B C together

η(f(xt)− f(x∗)) ≤ Dφ(x∗, xt)−Dφ(xt+1, xt)−Dφ(x∗, xt+1)

+
1

2ρ
η2‖gt‖2∗ +

ρ

2
‖xt − xt+1‖2

use strong convexity of φ (i.e. Dφ(xt+1, xt) ≥ (ρ/2)‖xt+1 − xt‖2)

η(f(xt)− f(x∗)) ≤ Dφ(x∗, xt)−Dφ(x∗, xt+1)︸ ︷︷ ︸
telescoping

+
1

2ρ
η2‖gt‖2∗

sum for T iterations and up to trivial computation

f

(
1

T

T∑
i=1

xt

)
− f(x∗) ≤

Dφ(x∗, x1)

ηT
+
ηL2

2ρ
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Simplex setup

For minimizing on simplex constraint C = ∆n = {x ∈ Rn+ :
∑n

i=1 xi = 1}, mirror

descent with φ the negative entropy achieves a rate of convergence of order
√

logn
T

whereas subgradient method only achieves
√

n
t .

For φ the negative entropy, we can show that φ is 1-strongly convex w.r.t. ‖ · ‖1
(Pinsker’s inequality).

1 1

1

x y

z
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Any questions?
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