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Admin

Remaining courseworks
> Assignments 3, 4, 5
» Quiz 2

» Final exam

Some references this course heavily relies on include
» Convex Optimization, Stephen Boyd and Lieven Vandenberghe
Convex Optimization: Algorithms and Complexity, Sébastien Bubeck

>

» Convex Optimization, Ryan Tibshirani

» Optimization Algorithms, Constantine Caramanis
>

and more (see cvxopt website)
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Standard form problem

Optimization problem in the standard form (not necessarily convex)

vVVvyYVvyVvYVvyy

minimize fo(x)
subject to  fi(x) <

optimization variable x € R™

objective function fp: R" - R

inequality constraint functions f; : R” — R
equality constraint functions h; : R — R
domain D =" ,dom f; N (f_; domh;
optimal value p*
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Expressing problems in standard form

Box constraints

minimize fo(x)

subject to I; <xz; <w;, 1=1,...,n
Standard form

minimize fy(x)
subject to  f; <0, i=1,...,2n

li—l‘i fOI”L'Zl,...,’rl
-]

Ti—m — Wi—n fori=n+1,...,2n

where
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Lagrangian

Augment the objective function with a weighted sum of the constraint functions
Lagrangian L : R x R™ x R? — R with dom L =D x R™ x RP
L(z,\v) = +Z)\fz Z vihi(z)
i=1

» )\; is Lagrange multiplier associated with f;(z) <0
» u; is Lagrange multiplier associated with h;(z) =0

P can be interpreted as soft linear approximation of hard indicator functions
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Lagrange dual function

Minimum value of the Lagrangian over x

Lagrange dual function g : R" x RP — R
P
A\, v) = inf L(z,\,v) = inf Aifi( ihi
o0 0) = inf £z 00) = i (folo +Z i)+ 3w <x>>

P> a concave function even when the standard form problem is not convex because it
is pointwise minimum of affine functions of A\, v

P> can be —oo when the Lagrangian is unbounded below in x
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Lower bounds on optimal value

Lower bound property:

g\ v) <p* forany A = 0 and v

Proof.

For T a feasible point for the problem, we have

L(z,\v) —l—Z)\ fi(z Z vihi(Z) < fo(Z)
i=1
<0
Thus
g(A\,v) :;Iélf L(x,\,v) < L(Z,\,v) < fo(Z)
The proof is finished by noting that this holds for every feasible point & O
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9 \ — i 4 » (solid curve) objective function fy

1 Sl » (dashed curve) constraint function f;

0 > (dotted vertical lines) feasible set [—0.46, 0.46]
-1 > (circle) z* = —0.46, p* = 1.54
23 05 0 05 1 » (dotted curves) L(x,\) for A=0.1,...,1.0

x

Figure: Lower bound from a dual
feasible point; figure from BV
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Figure: Dual function g; figure from

BV

1

» (dashed line) optimal value p*
» (solid line) dual function g(\)
>

(x-axis) dual variable A

fo or f1 not necessarily convex, but g is concave
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Least norm solution of linear equations

minimize '
subject to Ax =b
> Lagrangian
Lz, v)=z"z+ v (Az —b)

» Dual function

g(v) = inf L(z,v) = L(—%ATV, V) = —iVTAATV Ty

which is a concave quadratic function of v
» Lower bound property

1
P> —ZVTAATU —b'v for any v

10/12



Standard form LP

minimize ¢'z
subject to Ax =b
x=0
> Lagrangian
L(z,\v) B W (Az )
— b vt (c+ATv—NTa
» Dual function
g\ v) = inf L(z, \,v) = {_bTV ATy Ae=o
’ -0 otherwise

g is linear on affine domain domg = {(\,v) | ATv — XA + ¢ = 0}, hence concave

» Lower bound property
p*>—b'v ifATvtex0
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Any questions?

12/12



