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Admin

Remaining courseworks

I Assignments 3, 4, 5

I Quiz 2

I Final exam

Some references this course heavily relies on include

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe

I Convex Optimization: Algorithms and Complexity, Sébastien Bubeck

I Convex Optimization, Ryan Tibshirani

I Optimization Algorithms, Constantine Caramanis

I and more (see cvxopt website)
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Standard form problem

Optimization problem in the standard form (not necessarily convex)

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

I optimization variable x ∈ Rn

I objective function f0 : Rn → R
I inequality constraint functions fi : Rn → R
I equality constraint functions hi : Rn → R
I domain D =

⋂m
i=0 dom fi ∩

⋂p
i=1 domhi

I optimal value p?

3 / 12



Expressing problems in standard form

Box constraints

minimize f0(x)

subject to li ≤ xi ≤ ui, i = 1, . . . , n

Standard form

minimize f0(x)

subject to fi ≤ 0, i = 1, . . . , 2n

where

fi =

{
li − xi for i = 1, . . . , n

xi−n − ui−n for i = n+ 1, . . . , 2n

4 / 12



Lagrangian

Augment the objective function with a weighted sum of the constraint functions

Lagrangian L : Rn × Rm × Rp → R with domL = D × Rm × Rp

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

I λi is Lagrange multiplier associated with fi(x) ≤ 0

I νi is Lagrange multiplier associated with hi(x) = 0

I can be interpreted as soft linear approximation of hard indicator functions
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Lagrange dual function

Minimum value of the Lagrangian over x

Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

I a concave function even when the standard form problem is not convex because it
is pointwise minimum of affine functions of λ, ν

I can be −∞ when the Lagrangian is unbounded below in x
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Lower bounds on optimal value

Lower bound property:

g(λ, ν) ≤ p? for any λ � 0 and ν

Proof.
For x̃ a feasible point for the problem, we have

L(x̃, λ, ν) = f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃)︸ ︷︷ ︸
≤0

≤ f0(x̃)

Thus
g(λ, ν) = inf

x∈D
L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃)

The proof is finished by noting that this holds for every feasible point x̃
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Figure: Lower bound from a dual
feasible point; figure from BV

I (solid curve) objective function f0
I (dashed curve) constraint function f1
I (dotted vertical lines) feasible set [−0.46, 0.46]
I (circle) x? = −0.46, p? = 1.54

I (dotted curves) L(x, λ) for λ = 0.1, . . . , 1.0
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Figure: Dual function g; figure from
BV

I (dashed line) optimal value p?

I (solid line) dual function g(λ)

I (x-axis) dual variable λ

f0 or f1 not necessarily convex, but g is concave
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Least norm solution of linear equations

minimize x>x

subject to Ax = b

I Lagrangian
L(x, ν) = x>x+ ν>(Ax− b)

I Dual function

g(ν) = inf
x
L(x, ν) = L(−1

2
A>ν, ν) = −1

4
ν>AA>ν − b>ν

which is a concave quadratic function of ν

I Lower bound property

p? ≥ −1

4
ν>AA>ν − b>ν for any ν
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Standard form LP

minimize c>x

subject to Ax = b

x � 0

I Lagrangian

L(x, λ, ν) = c>x− λ>x+ ν>(Ax− b)
= −b>ν + (c+A>ν − λ)>x

I Dual function

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−b>ν A>ν − λ+ c = 0

−∞ otherwise

g is linear on affine domain dom g = {(λ, ν) | A>ν − λ+ c = 0}, hence concave
I Lower bound property

p? ≥ −b>ν if A>ν + c � 0
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Any questions?
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