# Convex Optimization 

Part 4: Duality

Namhoon Lee

POSTECH

31 Oct 2022

## Admin

Remaining courseworks

- Assignments 3, 4, 5
- Quiz 2
- Final exam

Some references this course heavily relies on include

- Convex Optimization, Stephen Boyd and Lieven Vandenberghe
- Convex Optimization: Algorithms and Complexity, Sébastien Bubeck
- Convex Optimization, Ryan Tibshirani
- Optimization Algorithms, Constantine Caramanis
- and more (see cvxopt website)


## Standard form problem

Optimization problem in the standard form (not necessarily convex)

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

- optimization variable $x \in \mathbb{R}^{n}$
- objective function $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- inequality constraint functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- equality constraint functions $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- domain $\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$
- optimal value $p^{\star}$


## Expressing problems in standard form

Box constraints

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, n
\end{aligned}
$$

Standard form

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i} \leq 0, \quad i=1, \ldots, 2 n
\end{aligned}
$$

where

$$
f_{i}= \begin{cases}l_{i}-x_{i} & \text { for } i=1, \ldots, n \\ x_{i-n}-u_{i-n} & \text { for } i=n+1, \ldots, 2 n\end{cases}
$$

## Lagrangian

Augment the objective function with a weighted sum of the constraint functions
Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ with dom $L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- $\lambda_{i}$ is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- $\nu_{i}$ is Lagrange multiplier associated with $h_{i}(x)=0$
- can be interpreted as soft linear approximation of hard indicator functions


## Lagrange dual function

Minimum value of the Lagrangian over $x$
Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
$$

- a concave function even when the standard form problem is not convex because it is pointwise minimum of affine functions of $\lambda, \nu$
- can be $-\infty$ when the Lagrangian is unbounded below in $x$


## Lower bounds on optimal value

Lower bound property:

$$
g(\lambda, \nu) \leq p^{\star} \quad \text { for any } \lambda \succeq 0 \text { and } \nu
$$

## Proof.

For $\tilde{x}$ a feasible point for the problem, we have

$$
L(\tilde{x}, \lambda, \nu)=f_{0}(\tilde{x})+\underbrace{\sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x})}_{\leq 0} \leq f_{0}(\tilde{x})
$$

Thus

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \leq L(\tilde{x}, \lambda, \nu) \leq f_{0}(\tilde{x})
$$

The proof is finished by noting that this holds for every feasible point $\tilde{x}$


- (solid curve) objective function $f_{0}$
- (dashed curve) constraint function $f_{1}$
- (dotted vertical lines) feasible set $[-0.46,0.46]$
- (circle) $x^{\star}=-0.46, p^{\star}=1.54$
- (dotted curves) $L(x, \lambda)$ for $\lambda=0.1, \ldots, 1.0$

Figure: Lower bound from a dual feasible point; figure from BV


- (dashed line) optimal value $p^{\star}$
- (solid line) dual function $g(\lambda)$
- (x-axis) dual variable $\lambda$
$f_{0}$ or $f_{1}$ not necessarily convex, but $g$ is concave
Figure: Dual function $g$; figure from BV


## Least norm solution of linear equations

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} x \\
\text { subject to } & A x=b
\end{aligned}
$$

- Lagrangian

$$
L(x, \nu)=x^{\top} x+\nu^{\top}(A x-b)
$$

- Dual function

$$
g(\nu)=\inf _{x} L(x, \nu)=L\left(-\frac{1}{2} A^{\top} \nu, \nu\right)=-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu
$$

which is a concave quadratic function of $\nu$

- Lower bound property

$$
p^{\star} \geq-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu \quad \text { for any } \nu
$$

## Standard form LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \succeq 0
\end{aligned}
$$

- Lagrangian

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{\top} x-\lambda^{\top} x+\nu^{\top}(A x-b) \\
& =-b^{\top} \nu+\left(c+A^{\top} \nu-\lambda\right)^{\top} x
\end{aligned}
$$

- Dual function

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{\top} \nu & A^{\top} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

$g$ is linear on affine domain $\operatorname{dom} g=\left\{(\lambda, \nu) \mid A^{\top} \nu-\lambda+c=0\right\}$, hence concave

- Lower bound property

$$
p^{\star} \geq-b^{\top} \nu \quad \text { if } A^{\top} \nu+c \succeq 0
$$

Any questions?

