Convex Optimization

Part 4: Duality II

Namhoon Lee

POSTECH

2 Nov 2022

Admin

Assignment 3

- will be out this Friday
- based on coding
- due in 2 weeks

Lagrange dual problem

What is the best lower bound that can be obtained from the Lagrange dual function?

Lagrange dual problem

$$
\begin{aligned}
\operatorname{maximize} & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{aligned}
$$

- a convex optimization problem (max concave objective with convex constraint; regardless of whether or not the primal problem is convex)
- optimal value denoted by $d^{\star}\left(d^{\star}=-\infty\right.$ if problem is infeasible; $d^{\star}=+\infty$ if unbounded above)
- a pair (λ, ν) is dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$; and $\left(\lambda^{\star}, \nu^{\star}\right)$ dual optimal

Making dual constraints explicit

Domain of the dual function

$$
\operatorname{dom} g=\{(\lambda, \nu) \mid g(\lambda, \nu)>-\infty\}
$$

- often dom g has dimension smaller than $m+p$; some equality constraints are hidden or implicit in g
- can form an equivalent problem in which these equality constraints are given explicitly as constraints

Lagrange dual of standard form LP

$$
\begin{aligned}
& \text { minimize } c^{\top} x \quad \rightarrow \quad \text { maximize } g(\lambda, \nu)= \begin{cases}-b^{\top} \nu & A^{\top} \nu-\lambda+c=0 \\
-\infty & \text { otherwise }\end{cases} \\
& \text { subject to } A x=b \quad \text { subject to } \quad \lambda \succeq 0 \\
& x \succeq 0 \\
& \rightarrow \quad \text { maximize }-b^{\top} \nu \quad \rightarrow \quad \text { maximize } \quad-b^{\top} \nu \\
& \text { subject to } \quad A^{\top} \nu-\lambda+c=0 \quad \text { subject to } \quad A^{\top} \nu+c \succeq 0
\end{aligned}
$$

- equivalent Lagrange dual problems (but not the same)

Lagrange dual of inequality form LP

$$
\begin{array}{rllll}
\operatorname{minimize} & c^{\top} x & \ldots & \text { maximize } & -b^{\top} \lambda \\
\text { subject to } & A x \preceq b & & \text { subject to } & A^{\top} \lambda+c=0 \\
& & & \lambda \succeq 0
\end{array}
$$

- reformulated by explicitly including the dual feasibility conditions as constraints
- symmetry between the standard and inequality form LPs and their duals; the dual of a standard form LP is an LP with only inequality constraints, and vice versa
- can show that dual of the inequality form LP is (equivalent to) the primal problem

Weak duality

Weak duality

$$
d^{\star} \leq p^{\star}
$$

- holds even if the original problem is not convex
- can be used to find a nontrivial lower bound; useful for difficult problems

Optimal duality gap

$$
p^{\star}-d^{\star} \geq 0
$$

- always nonnegative

Duality gap

Duality gap: with primal feasible x and dual feasible (λ, ν)

$$
f(x)-g(\lambda, \nu)
$$

is called the duality gap
From the lower bound property, we have

$$
f(x)-p^{\star} \leq f(x)-g(\lambda, \nu)
$$

- this also indicates that when the duality gap is zero, the primal is optimal
- can provide a stopping criterion of iterative methods

Strong duality

Strong duality

$$
d^{\star}=p^{\star}
$$

- zero optimal duality gap; Lagrange dual function is tight
- does not hold in general; usually (but not always) holds for convex problems
- there exist sufficient conditions beyond convexity that guarantee strong duality which are called constraint qualifications

Slater's condition

Slater's condition: given the primal problem is convex, if the problem is strictly feasible, i.e., if there exists an $x \in \operatorname{int} \mathcal{D}$ such that

$$
f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

then strong duality holds

- guarantees strong duality: $p^{\star}=d^{\star}$
- also guarantees that the dual optimal value is attained when $d^{\star}>-\infty$
- there exists many other types of constraint qualifications

Refinement of Slater's condition

When the first k constraint functions f_{1}, \ldots, f_{k} are affine, strong duality holds under the following weaker condition: if there exists an $x \in \operatorname{int} \mathcal{D}$ with

$$
\underbrace{f_{i}(x) \leq 0, \quad i=1, \ldots, k,}_{\text {no strict inequality }} \quad f_{i}(x)<0, \quad i=k+1, \ldots, m, \quad A x=b
$$

then strong duality holds

- in other words, the affine inequalities do not need to hold with strict inequality
- Slater's condition reduces to feasibility when the constraints are all linear equalities and inequalities, and $\operatorname{dom} f_{0}$ is open

Least norm solution of linear equations

$$
\begin{array}{rlr}
\operatorname{minimize} & x^{\top} x & \text { maximize }
\end{array}-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu
$$

- the dual problem is an unconstrained concave quadratic maximization problem
- Slater's condition is simply that the primal problem is feasible; then $p^{\star}=d^{\star}$ strong duality holds

Inequality form LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \preceq b
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{maximize} & -b^{\top} \lambda \\
\text { subject to } & A^{\top} \lambda+c=0 \\
& \lambda \succeq 0
\end{aligned}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}; i.e., strong duality holds if the problem is feasible
- in fact this holds for any LP either standard or inequality form
- can confirm that this holds for the dual as well if it is feasible
- thus $p^{\star}=d^{\star}$ except when both the primal and dual problems are infeasible $\left(p^{\star}=\infty, d^{\star}=-\infty\right)$

Any questions?

