Convex Optimization Part 4: Duality II

Namhoon Lee

POSTECH

2 Nov 2022

Admin

Assignment 3

- will be out this Friday
- based on coding
- due in 2 weeks

Lagrange dual problem

What is the best lower bound that can be obtained from the Lagrange dual function?

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- a convex optimization problem (max concave objective with convex constraint; regardless of whether or not the primal problem is convex)
- ▶ optimal value denoted by d^{*} (d^{*} = -∞ if problem is infeasible; d^{*} = +∞ if unbounded above)
- ▶ a pair (λ, ν) is dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \text{dom } g$; and (λ^*, ν^*) dual optimal

Making dual constraints explicit

Domain of the dual function

$$\operatorname{dom} g = \{(\lambda,\nu) ~|~ g(\lambda,\nu) > -\infty\}$$

- ▶ often dom g has dimension smaller than m + p; some equality constraints are hidden or implicit in g
- can form an equivalent problem in which these equality constraints are given explicitly as constraints

Lagrange dual of standard form LP

equivalent Lagrange dual problems (but not the same)

Lagrange dual of inequality form LP

minimize
$$c^{\top}x$$
 ... maximize $-b^{\top}\lambda$
subject to $Ax \leq b$ subject to $A^{\top}\lambda + c = 0$
 $\lambda \geq 0$

reformulated by explicitly including the dual feasibility conditions as constraints

- symmetry between the standard and inequality form LPs and their duals; the dual of a standard form LP is an LP with only inequality constraints, and vice versa
- ▶ can show that dual of the inequality form LP is (equivalent to) the primal problem

Weak duality

Weak duality

$$d^\star \le p^\star$$

- holds even if the original problem is not convex
- > can be used to find a nontrivial lower bound; useful for difficult problems

Optimal duality gap

$$p^{\star} - d^{\star} \ge 0$$

Duality gap

Duality gap: with primal feasible x and dual feasible (λ, ν)

 $f(x) - g(\lambda, \nu)$

is called the duality gap

From the lower bound property, we have

$$f(x) - p^* \le f(x) - g(\lambda, \nu)$$

this also indicates that when the duality gap is zero, the primal is optimal
can provide a stopping criterion of iterative methods

Strong duality

Strong duality

$$d^{\star} = p^{\star}$$

- zero optimal duality gap; Lagrange dual function is tight
- does not hold in general; usually (but not always) holds for convex problems
- there exist sufficient conditions beyond convexity that guarantee strong duality which are called constraint qualifications

Slater's condition

Slater's condition: given the primal problem is convex, if the problem is strictly feasible, *i.e.*, if there exists an $x \in int \mathcal{D}$ such that

$$f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

then strong duality holds

- ▶ guarantees strong duality: $p^{\star} = d^{\star}$
- \blacktriangleright also guarantees that the dual optimal value is attained when $d^{\star}>-\infty$
- there exists many other types of constraint qualifications

Refinement of Slater's condition

When the first k constraint functions f_1, \ldots, f_k are affine, strong duality holds under the following weaker condition: if there exists an $x \in \text{int } \mathcal{D}$ with

$$\underbrace{f_i(x) \le 0, \quad i = 1, \dots, k,}_{\text{no strict inequality}} \qquad f_i(x) < 0, \quad i = k + 1, \dots, m, \qquad Ax = b$$

then strong duality holds

- ▶ in other words, the affine inequalities do not need to hold with strict inequality
- Slater's condition reduces to feasibility when the constraints are all linear equalities and inequalities, and dom f₀ is open

Least norm solution of linear equations

minimize
$$x^{\top}x$$
 maximize $-\frac{1}{4}\nu^{\top}AA^{\top}\nu - b^{\top}\nu$
subject to $Ax = b$

the dual problem is an unconstrained concave quadratic maximization problem
Slater's condition is simply that the primal problem is feasible; then p* = d* strong duality holds

Inequality form LP

minimize
$$c^{\top}x$$
maximize $-b^{\top}\lambda$ subject to $Ax \preceq b$ subject to $A^{\top}\lambda + c = 0$ $\lambda \succeq 0$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} ; *i.e.*, strong duality holds if the problem is feasible
- ▶ in fact this holds for any LP either standard or inequality form
- can confirm that this holds for the dual as well if it is feasible
- ► thus p^{*} = d^{*} except when both the primal and dual problems are infeasible (p^{*} = ∞, d^{*} = -∞)

Any questions?