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Admin

Assignment 3
» about Frank-Wolfe method
» due by Friday 25 November

Midterm course assessment (15 respondents)
> positive overall — thank you!

> feedback on assignments, TA-ing, English, review
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Conjugate function

The conjugate of a function f : R™ — R is defined as

Ffy)= sup (y'z—f(z))

z€dom f

> f*is convex (even when f is not), since it is the pointwise supremum of a family
of convex functions of y

» a.k.a. Legendre-Fenchel transformation, Fenchel transformation, Fenchel conjugate
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Figure: The conjugate function f*(y) is the maximum gap between linear function yx and f(x)
as shown by the dashed line; figure from BV
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Quadratic function

» notice V f* is the inverse of V f

General convex case (A = 0)

DO | =

[ y) =

(y—b)TAT(y—b) —c, dom f*=R(A)+b
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Negative entropy and negative logarithm

Negative entropy

n

f(z) = Z"TZ log z; fly) = Z eVi—1
=1

i=1

Negative logarithm

n

fl) == loga; Fy) == log(—y) —n
i=1

=1
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Norm

Norm

ooyl >1

f@) = =] Fy) = {0 lyll <1

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball
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Proof.
Recall the definition of dual norm

lyll« = sup =’y
ol <1

To evaluate f*(y) = sup, (y'z — ||z||) consider two cases:

> if ||ly|l« < 1, then y"x < ||z|| for all z; thus f*(y) = sup,(y 'z — ||z|) = 0 with
=0

> if ||ly||« > 1, it means there exists an z with ||z|| < 1, Ty > 1; taking z = tz and
letting ¢ — oo we have

y'e— |zl =ty 2 —[l2]) = oo

which shows that f*(y) = oo
L]
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Fenchel's inequality
from the definition of conjugate function

fl@)+ f(y) >a"y forallz,y

» proof is straightforward by the definition of Legendre-Fenchel transform
» can be thought as an extension to non-quadratic convex f of the inequality; for
example, for f(x) = (1/2)z "z we have

Lt
5xx+ yy>a:y

or more generally

1 1
ia:TQ;r + inQ_ly >2'y where Q =0
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Conjugate of the conjugate

@)= sup (z'y—fv)

yEdom f*

> f**is closed and convex

» from Fenchel's inequality, 2"y — f*(y) < f(z) for all y and x; therefore
™ (z) < f(x) forall x

equivalently, epi f C epi f** (for any f)
> if f is closed and convex, then

f=f forallz

equivalently, epi f = epi f** (if f is closed and convex); proof on next page
» (understanding in illustration)

10/15



Lagrange dual and conjugate functions

To give one simple connection between Lagrange dual and conjugate function, consider
the following problem (which is not very interesting though)

minimize f(x)

subject to x =0

Lagrange dual function

g(v) = inf (f(z) +v'2) = =sup ((-v) '@ = f(2)) = =" (-v)
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More generally, consider a problem with linear inequality and equality constraints

minimize fo(x)
subject to Az <b
Cr=d

Lagrange dual function
g(\,v) = inf (fo(z) + A (Az —b) + v (Cz — d))
= b'A—d'v+ inf (fo(z) + (ATA+CTv)T2)
= b AN—dv—fi(-ATA-CTv)

» simplifies derivation of dual if conjugate of fj is known
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Equality constrained norm minimization

minimize ||z|
subject to Ax =b

recall the conjugate of the norm function is the indicator function of the dual norm

unit ball
fo (y) = { .
00 otherwise

from the relationship between the conjugate function and Lagrange dual function

—bTv ATy, <1

—00 otherwise

gw)=-b"v— fi(-ATv) = {
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Entropy maximization

n
minimize fo(z) = Z x; log x;
=1

subject to Ax <b
1z =1

recall the conjugate of the negative entropy function
n
i—1
foly) = e
i=1

from the relationship between the conjugate function and Lagrange dual function
n n
T T
g\v)=—-b"A—v— Z e U A= _pTAx—p—e vt Z e %
i=1 i=1

where a; is the ith column of A
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Any questions?
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