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Admin

Assignment 3

I about Frank-Wolfe method

I due by Friday 25 November

Midterm course assessment (15 respondents)

I positive overall – thank you!

I feedback on assignments, TA-ing, English, review
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Conjugate function

The conjugate of a function f : Rn → R is defined as

f∗(y) = sup
x∈dom f

(
y>x− f(x)

)
I f∗ is convex (even when f is not), since it is the pointwise supremum of a family

of convex functions of y

I a.k.a. Legendre-Fenchel transformation, Fenchel transformation, Fenchel conjugate
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Figure: The conjugate function f∗(y) is the maximum gap between linear function yx and f(x)
as shown by the dashed line; figure from BV
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Quadratic function

f(x) =
1

2
x>Ax+ b>x+ c

Strictly convex case (A � 0)

f∗(y) =
1

2
(y − b)>A−1(y − b)− c

I notice ∇f∗ is the inverse of ∇f

General convex case (A � 0)

f∗(y) =
1

2
(y − b)>A†(y − b)− c, dom f∗ = R(A) + b
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Negative entropy and negative logarithm

Negative entropy

f(x) =

n∑
i=1

xi log xi f∗(y) =

n∑
i=1

eyi−1

Negative logarithm

f(x) = −
n∑
i=1

log xi f∗(y) = −
n∑
i=1

log(−yi)− n
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Norm

Norm

f(x) = ‖x‖ f∗(y) =

{
0 ‖y‖∗ ≤ 1

∞ ‖y‖∗ > 1

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball
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Proof.
Recall the definition of dual norm

‖y‖∗ = sup
‖x‖≤1

x>y

To evaluate f∗(y) = supx
(
y>x− ‖x‖

)
consider two cases:

I if ‖y‖∗ ≤ 1, then y>x ≤ ‖x‖ for all x; thus f∗(y) = supx(y
>x− ‖x‖) = 0 with

x = 0

I if ‖y‖∗ > 1, it means there exists an x with ‖x‖ ≤ 1, x>y > 1; taking x = tz and
letting t→∞ we have

y>x− ‖x‖ = t(y>z − ‖z‖)→∞

which shows that f∗(y) =∞
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Fenchel’s inequality

from the definition of conjugate function

f(x) + f∗(y) ≥ x>y for all x, y

I proof is straightforward by the definition of Legendre-Fenchel transform

I can be thought as an extension to non-quadratic convex f of the inequality; for
example, for f(x) = (1/2)x>x we have

1

2
x>x+

1

2
y>y ≥ x>y

or more generally

1

2
x>Qx+

1

2
y>Q−1y ≥ x>y where Q � 0
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Conjugate of the conjugate

f∗∗(x) = sup
y∈dom f∗

(
x>y − f∗(y)

)
I f∗∗ is closed and convex

I from Fenchel’s inequality, x>y − f∗(y) ≤ f(x) for all y and x; therefore

f∗∗(x) ≤ f(x) for all x

equivalently, epi f ⊆ epi f∗∗ (for any f)

I if f is closed and convex, then

f∗∗ = f for all x

equivalently, epi f = epi f∗∗ (if f is closed and convex); proof on next page

I (understanding in illustration)
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Lagrange dual and conjugate functions

To give one simple connection between Lagrange dual and conjugate function, consider
the following problem (which is not very interesting though)

minimize f(x)

subject to x = 0

Lagrange dual function

g(ν) = inf
x

(
f(x) + ν>x

)
= − sup

x

(
(−ν)>x− f(x)

)
= −f∗(−ν)
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More generally, consider a problem with linear inequality and equality constraints

minimize f0(x)

subject to Ax � b
Cx = d

Lagrange dual function

g(λ, ν) = inf
x

(
f0(x) + λ>(Ax− b) + ν>(Cx− d)

)
= −b>λ− d>ν + inf

x

(
f0(x) + (A>λ+ C>ν)>x

)
= −b>λ− d>ν − f∗0 (−A>λ− C>ν)

I simplifies derivation of dual if conjugate of f0 is known
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

recall the conjugate of the norm function is the indicator function of the dual norm
unit ball

f∗0 (y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise

from the relationship between the conjugate function and Lagrange dual function

g(ν) = −b>ν − f∗0 (−A>ν) =

{
−b>ν ‖A>ν‖∗ ≤ 1

−∞ otherwise
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Entropy maximization

minimize f0(x) =

n∑
i=1

xi log xi

subject to Ax � b
1
>x = 1

recall the conjugate of the negative entropy function

f∗0 (y) =

n∑
i=1

eyi−1

from the relationship between the conjugate function and Lagrange dual function

g(λ, ν) = −b>λ− ν −
n∑
i=1

e−a
>
i λ−ν−1 = −b>λ− ν − e−ν−1

n∑
i=1

e−a
>
i λ

where ai is the ith column of A
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Any questions?
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