Convex Optimization Part 4: Duality III

Namhoon Lee

POSTECH

7 Nov 2022

Admin

Assignment 3

- about Frank-Wolfe method
- due by Friday 25 November

Midterm course assessment (15 respondents)

- positive overall thank you!
- feedback on assignments, TA-ing, English, review

Conjugate function

The **conjugate** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^\top x - f(x) \right)$$

- ▶ f* is convex (even when f is not), since it is the pointwise supremum of a family of convex functions of y
- > a.k.a. Legendre-Fenchel transformation, Fenchel transformation, Fenchel conjugate

Figure: The conjugate function $f^*(y)$ is the maximum gap between linear function yx and f(x) as shown by the dashed line; figure from BV

Quadratic function

$$f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$$

Strictly convex case $(A \succ 0)$

$$f^*(y) = \frac{1}{2}(y-b)^{\top}A^{-1}(y-b) - c$$

 \blacktriangleright notice ∇f^* is the inverse of ∇f

General convex case ($A \succeq 0$)

$$f^*(y) = \frac{1}{2}(y-b)^{\top}A^{\dagger}(y-b) - c, \quad \text{dom} f^* = \mathcal{R}(A) + b$$

Negative entropy and negative logarithm

Negative entropy

$$f(x) = \sum_{i=1}^{n} x_i \log x_i \qquad f^*(y) = \sum_{i=1}^{n} e^{y_i - 1}$$

Negative logarithm

$$f(x) = -\sum_{i=1}^{n} \log x_i$$
 $f^*(y) = -\sum_{i=1}^{n} \log(-y_i) - n$

Norm

Norm

$$f(x) = ||x|| \qquad f^*(y) = \begin{cases} 0 & ||y||_* \le 1\\ \infty & ||y||_* > 1 \end{cases}$$

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball

Proof. Recall the definition of dual norm

$$\|y\|_* = \sup_{\|x\| \le 1} x^\top y$$

To evaluate $f^*(y) = \sup_x \left(y^\top x - \|x\|\right)$ consider two cases:

• if
$$||y||_* \leq 1$$
, then $y^\top x \leq ||x||$ for all x ; thus $f^*(y) = \sup_x (y^\top x - ||x||) = 0$ with $x = 0$

▶ if $||y||_* > 1$, it means there exists an x with $||x|| \le 1$, $x^\top y > 1$; taking x = tz and letting $t \to \infty$ we have

$$y^{\top}x - ||x|| = t(y^{\top}z - ||z||) \to \infty$$

which shows that $f^*(y) = \infty$

Fenchel's inequality

from the definition of conjugate function

$$f(x) + f^*(y) \ge x^\top y \quad \text{for all } x, y$$

- proof is straightforward by the definition of Legendre-Fenchel transform
- ▶ can be thought as an extension to non-quadratic convex f of the inequality; for example, for $f(x) = (1/2)x^{\top}x$ we have

$$\frac{1}{2}x^{\top}x + \frac{1}{2}y^{\top}y \ge x^{\top}y$$

or more generally

$$\frac{1}{2} \boldsymbol{x}^\top \boldsymbol{Q} \boldsymbol{x} + \frac{1}{2} \boldsymbol{y}^\top \boldsymbol{Q}^{-1} \boldsymbol{y} \geq \boldsymbol{x}^\top \boldsymbol{y} \quad \text{where } \boldsymbol{Q} \succ \boldsymbol{0}$$

Conjugate of the conjugate

$$f^{**}(x) = \sup_{y \in \text{dom } f^*} \left(x^\top y - f^*(y) \right)$$

• f^{**} is closed and convex

▶ from Fenchel's inequality, $x^{\top}y - f^*(y) \leq f(x)$ for all y and x; therefore

 $f^{**}(x) \le f(x)$ for all x

equivalently, $\operatorname{epi} f \subseteq \operatorname{epi} f^{**}$ (for any f)

 \blacktriangleright if f is closed and convex, then

$$f^{**} = f$$
 for all x

equivalently, $epi f = epi f^{**}$ (if f is closed and convex); proof on next page

(understanding in illustration)

Lagrange dual and conjugate functions

To give one simple connection between Lagrange dual and conjugate function, consider the following problem (which is not very interesting though)

 $\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & x = 0 \end{array}$

Lagrange dual function

$$g(\nu) = \inf_{x} \left(f(x) + \nu^{\top} x \right) = -\sup_{x} \left((-\nu)^{\top} x - f(x) \right) = -f^*(-\nu)$$

More generally, consider a problem with linear inequality and equality constraints

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax \leq b \\ & Cx = d \end{array}$$

Lagrange dual function

$$g(\lambda,\nu) = \inf_{x} \left(f_0(x) + \lambda^\top (Ax - b) + \nu^\top (Cx - d) \right)$$

= $-b^\top \lambda - d^\top \nu + \inf_{x} \left(f_0(x) + (A^\top \lambda + C^\top \nu)^\top x \right)$
= $-b^\top \lambda - d^\top \nu - f_0^* (-A^\top \lambda - C^\top \nu)$

• simplifies derivation of dual if conjugate of f_0 is known

Equality constrained norm minimization

 $\begin{array}{ll}\text{minimize} & \|x\|\\ \text{subject to} & Ax = b \end{array}$

recall the conjugate of the norm function is the indicator function of the dual norm unit ball

$$f_0^*(y) = \begin{cases} 0 & \|y\|_* \le 1 \\ \infty & \text{otherwise} \end{cases}$$

from the relationship between the conjugate function and Lagrange dual function

$$g(\nu) = -b^{\top}\nu - f_0^*(-A^{\top}\nu) = \begin{cases} -b^{\top}\nu & \|A^{\top}\nu\|_* \le 1\\ -\infty & \text{otherwise} \end{cases}$$

Entropy maximization

minimize
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$

subject to $Ax \preceq b$
 $\mathbb{1}^\top x = 1$

recall the conjugate of the negative entropy function

$$f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

from the relationship between the conjugate function and Lagrange dual function

$$g(\lambda,\nu) = -b^{\top}\lambda - \nu - \sum_{i=1}^{n} e^{-a_i^{\top}\lambda - \nu - 1} = -b^{\top}\lambda - \nu - e^{-\nu - 1}\sum_{i=1}^{n} e^{-a_i^{\top}\lambda}$$

where a_i is the *i*th column of A

Any questions?