Convex Optimization

Part 4: Duality III

Namhoon Lee

POSTECH

7 Nov 2022

Admin

Assignment 3

- about Frank-Wolfe method
- due by Friday 25 November

Midterm course assessment (15 respondents)

- positive overall - thank you!
- feedback on assignments, TA-ing, English, review

Conjugate function

The conjugate of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{\top} x-f(x)\right)
$$

- f^{*} is convex (even when f is not), since it is the pointwise supremum of a family of convex functions of y
- a.k.a. Legendre-Fenchel transformation, Fenchel transformation, Fenchel conjugate

Figure: The conjugate function $f^{*}(y)$ is the maximum gap between linear function $y x$ and $\mathrm{f}(\mathrm{x})$ as shown by the dashed line; figure from BV

Quadratic function

$$
f(x)=\frac{1}{2} x^{\top} A x+b^{\top} x+c
$$

Strictly convex case ($A \succ 0$)

$$
f^{*}(y)=\frac{1}{2}(y-b)^{\top} A^{-1}(y-b)-c
$$

- notice ∇f^{*} is the inverse of ∇f

General convex case $(A \succeq 0)$

$$
f^{*}(y)=\frac{1}{2}(y-b)^{\top} A^{\dagger}(y-b)-c, \quad \operatorname{dom} f^{*}=\mathcal{R}(A)+b
$$

Negative entropy and negative logarithm

Negative entropy

$$
f(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \quad f^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Negative logarithm

$$
f(x)=-\sum_{i=1}^{n} \log x_{i} \quad f^{*}(y)=-\sum_{i=1}^{n} \log \left(-y_{i}\right)-n
$$

Norm

Norm

$$
f(x)=\|x\| \quad f^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ \infty & \|y\|_{*}>1\end{cases}
$$

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball

Proof.

Recall the definition of dual norm

$$
\|y\|_{*}=\sup _{\|x\| \leq 1} x^{\top} y
$$

To evaluate $f^{*}(y)=\sup _{x}\left(y^{\top} x-\|x\|\right)$ consider two cases:

- if $\|y\|_{*} \leq 1$, then $y^{\top} x \leq\|x\|$ for all x; thus $f^{*}(y)=\sup _{x}\left(y^{\top} x-\|x\|\right)=0$ with $x=0$
- if $\|y\|_{*}>1$, it means there exists an x with $\|x\| \leq 1, x^{\top} y>1$; taking $x=t z$ and letting $t \rightarrow \infty$ we have

$$
y^{\top} x-\|x\|=t\left(y^{\top} z-\|z\|\right) \rightarrow \infty
$$

which shows that $f^{*}(y)=\infty$

Fenchel's inequality

from the definition of conjugate function

$$
f(x)+f^{*}(y) \geq x^{\top} y \quad \text { for all } x, y
$$

- proof is straightforward by the definition of Legendre-Fenchel transform
- can be thought as an extension to non-quadratic convex f of the inequality; for example, for $f(x)=(1 / 2) x^{\top} x$ we have

$$
\frac{1}{2} x^{\top} x+\frac{1}{2} y^{\top} y \geq x^{\top} y
$$

or more generally

$$
\frac{1}{2} x^{\top} Q x+\frac{1}{2} y^{\top} Q^{-1} y \geq x^{\top} y \quad \text { where } Q \succ 0
$$

Conjugate of the conjugate

$$
f^{* *}(x)=\sup _{y \in \operatorname{dom} f^{*}}\left(x^{\top} y-f^{*}(y)\right)
$$

- $f^{* *}$ is closed and convex
- from Fenchel's inequality, $x^{\top} y-f^{*}(y) \leq f(x)$ for all y and x; therefore

$$
f^{* *}(x) \leq f(x) \quad \text { for all } x
$$

equivalently, epi $f \subseteq \operatorname{epi} f^{* *}$ (for any f)

- if f is closed and convex, then

$$
f^{* *}=f \quad \text { for all } x
$$

equivalently, epi $f=\operatorname{epi} f^{* *}$ (if f is closed and convex); proof on next page

- (understanding in illustration)

Lagrange dual and conjugate functions

To give one simple connection between Lagrange dual and conjugate function, consider the following problem (which is not very interesting though)

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x=0
\end{aligned}
$$

Lagrange dual function

$$
g(\nu)=\inf _{x}\left(f(x)+\nu^{\top} x\right)=-\sup _{x}\left((-\nu)^{\top} x-f(x)\right)=-f^{*}(-\nu)
$$

More generally, consider a problem with linear inequality and equality constraints

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b \\
& C x=d
\end{aligned}
$$

Lagrange dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x}\left(f_{0}(x)+\lambda^{\top}(A x-b)+\nu^{\top}(C x-d)\right) \\
& =-b^{\top} \lambda-d^{\top} \nu+\inf _{x}\left(f_{0}(x)+\left(A^{\top} \lambda+C^{\top} \nu\right)^{\top} x\right) \\
& =-b^{\top} \lambda-d^{\top} \nu-f_{0}^{*}\left(-A^{\top} \lambda-C^{\top} \nu\right)
\end{aligned}
$$

- simplifies derivation of dual if conjugate of f_{0} is known

Equality constrained norm minimization

$$
\begin{aligned}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b
\end{aligned}
$$

recall the conjugate of the norm function is the indicator function of the dual norm unit ball

$$
f_{0}^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

from the relationship between the conjugate function and Lagrange dual function

$$
g(\nu)=-b^{\top} \nu-f_{0}^{*}\left(-A^{\top} \nu\right)= \begin{cases}-b^{\top} \nu & \left\|A^{\top} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

Entropy maximization

$$
\begin{aligned}
\text { minimize } & f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & A x \preceq b \\
& \mathbb{1}^{\top} x=1
\end{aligned}
$$

recall the conjugate of the negative entropy function

$$
f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

from the relationship between the conjugate function and Lagrange dual function

$$
g(\lambda, \nu)=-b^{\top} \lambda-\nu-\sum_{i=1}^{n} e^{-a_{i}^{\top} \lambda-\nu-1}=-b^{\top} \lambda-\nu-e^{-\nu-1} \sum_{i=1}^{n} e^{-a_{i}^{\top} \lambda}
$$

where a_{i} is the i th column of A

Any questions?

