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Quadratic program
Primal problem (P � 0)

minimize x>Px

subject to Ax � b

Dual function

g(λ) = inf
x

(
x>Px+ λ>(Ax− b)

)
= −1

4
λ>AP−1A>λ− b>λ

Dual problem

maximize − 1

4
λ>AP−1A>λ− b>λ

subject to λ � 0

I from Slater’s condition: p? = d? if Aã ≺ b for some x̃

I in fact, p? = d? always
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Entropy maximization
Recall the entropy maximization problem

minimize

n∑
i=1

xi log xi

subject to Ax � b
1>x = 1

Dual problem

maximize − b>λ− ν − e−ν−1
n∑
i=1

e−a
>
i λ

subject to λ � 0

I Slater’s condition: the optimal duality gap is zero if there exists an x � 0 with
Ax � b and 1>x = 1
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We can simplify the dual problem by maximizing over the dual variable ν analytically.
For fixed λ, the objective function is maximized when the derivative with respect to ν
is zero, i.e.

ν = log
∑
i=1

ne−a
>
i λ − 1

Substituting this optimal value of ν into the dual problem gives

maximize − b>λ− log
( n∑
i=1

e−a
>
i λ
)

subject to λ � 0

which is a geometric program (in convex form) with nonnegativity constraints
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Geometric interpretation of duality
Consider a set of values taken on by the constraint and objective functions

G =
{
(f1(x), . . . , fm(x), h1(x), . . . , hp(x), f0(x)) ∈ Rm × Rp × R | x ∈ D

}
Optimal value p? can be expressed in terms of G

p? = inf{t | (u, v, t) ∈ G, u � 0, v = 0}

To evaluate the dual function, we minimize the affine function

(λ, ν, 1)>(u, v, t) =

m∑
i=1

λiui +

p∑
i=1

νivi + t

i.e., we have the dual function as

g(λ, ν) = inf{(λ, ν, 1)>(u, v, t) | (u, v, t) ∈ G}
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If the infimum is finite, then the inequality

(λ, ν, 1)>(u, v, t) ≥ g(λ, ν)

defines a supporting hyperplane to G

Next suppose λ � 0. Then, obviously, t ≥ (λ, ν, 1)>(u, v, t) if u � 0 and v = 0.
Therefore

p? = inf{t | (u, v, t) ∈ G, u � 0, v = 0}
≥ inf{(λ, ν, 1)>(u, v, t) | (u, v, t) ∈ G, u � 0, v = 0}
≥ inf{(λ, ν, 1)>(u, v, t) | (u, v, t) ∈ G}
= g(λ, ν)

i.e., we have weak duality
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Consider a simple problem with one inequality constraint f1(x) ≤ 0

Interpretation of dual function

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

Figure: geometric interpretation of dual function and lower bound g(λ) ≤ p? figure from BV
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Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p (primal feasibility)

2. λ � 0 (dual feasibility)

3. f0(x) = g(λ, ν) (strong duality)

conversely, these three conditions imply optimality of x, (λ, ν), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness
assume x satisfies the primal constraints and λ � 0

g(λ, ν) = inf
x̃∈D

(
f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
i=1

vihi(x̃)

)

≤ f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

vihi(x)

≤ f0(x)

equality f0(x) = g(λ, ν) holds if and only if the two inequalities hold with equality:

I 1st inequality: x minimizes L(x̃, λ, ν) over x̃ ∈ D
I 2nd inequality: λifi(x) = 0 for i = 1, . . . ,m, i.e.,

λi > 0 ⇒ fi(x) = 0, fi(x) < 0 ⇒ λi = 0

this is known as complementary slackness
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Optimality conditions
if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if

1. fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p (primal feasibility)

2. λ � 0 (dual feasibility)

3. λifi(x) = 0 for i = 1, . . . ,m (complementary slackness)

4. x is a minimizer of L(·, λ, ν) (stationarity)

conversely, these four conditions imply optimality of x, (λ, ν), and strong duality

if problem is convex and the functions fi, hi are differentiable, 4 can be written as

4’ the gradient of the Lagrangian with respect to x vanishes: (stationarity’)

∇f0(x) +
m∑
i=1

λi∇fi(x) +
p∑
i=1

νi∇hi(x) = 0

conditions 1,2,3,4’ are known as Karush-Kuhn-Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

I strong duality: p? = d?

I if optimal value is finite, dual optimum is attained: there exist dual optimal λ, ν

hence, if problem is convex and Slater’s constraint qualification holds:

I x is optimal if and only if there exist λ, ν such that conditions 1-4 are satisfied

I if functions are differentiable, condition 4 can be replaced with 4’
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Summary

I KKT conditions imply zero duality gap, and vice versa (sufficient and necessary),
i.e.

x? and (λ?, ν?) are optimal ⇐⇒ x? and (λ?, ν?) satisfy the KKT conditions

I If Slater’s condition holds (for a convex problem) then KKT conditions are met.

I To note further, the KKT conditions are essentially the same as the optimality
conditions derived from subgradient

0 ∈ ∂f(x?) +
m∑
i=1

Nfi≤0(x
?) +

p∑
i=1

Nhi=0(x
?)
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Example: equality constrained convex quadratic minimization

minimize
1

2
x>Px+ q>x+ r

subject to Ax = b,

where P ∈ Sn+; this problem leads to Newton’s method for constrained case (later)

By KKT conditions we have

Ax? = b, Px? + q +A>ν? = 0

(note that complementary slackness and dual feasibility are vacuous)

which we can write as [
P A>

A 0

] [
x?

ν?

]
=

[
−q
b

]
13 / 19



Example: water-filling

minimize −
n∑
i=1

log(xi + αi)

subject to x � 0

1>x = 1

I we assume that αi > 0
I Lagrangian is L(x, λ, ν) = −

∑
i log(x̃i + αi)− λ>x̃+ ν(1>x̃− 1)

Optimality conditions: x is optimal iff there exist λ ∈ Rn, ν ∈ R such that

1. x � 0, 1>x = 1
2. λ � 0
3. λixi = 0 for i = 1, . . . , n
4. x minimizes Lagrangian:

1

xi + αi
+ λi = ν, i = 1, . . . , n
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Solution

I if ν < 1/αi : λi = 0 and xi = 1/ν − αi
I if ν ≥ 1/αi : xi = 0 and λi = ν − 1/αi

I two cases may be combined as

xi = max{0, 1
ν
− αi}, λi = max{0, ν − 1

αi
}

I determine ν from condition 1>x = 1:

n∑
i=1

max{0, 1
ν
− αi} = 1

Interpretation

I n patches; level of patch i is at height αi
I flood area with unit amount of water

I resulting level is 1/ν?
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Figure: Illustration of water-filling algorithm; figure from BV
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Example: projection on 1-norm ball

minimize
1

2
‖x− a‖22

subject to ‖x‖1 ≤ 1

Optimality conditions

1. ‖x‖1 ≤ 1

2. λ ≥ 0

3. λ(1− ‖x‖1) = 0

4. x minimizes Lagrangian

L(x̃, λ) =
1

2
‖x̃− a‖22 + λ(‖x̃‖1 − 1)

=

n∑
k=1

(
1

2
(x̃k − ak)2 + λ|x̃k|

)
− λ
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Solution

I optimization problem in condition 4 is separable; solution for λ ≥ 0 is

xk =


ak − λ ak ≥ λ
0 −λ ≤ ak ≤ λ
ak + λ ak ≤ −λ

I therefore ‖x‖1 =
∑

k |xk| =
∑

kmax{0, |ak| − λ}
I if ‖a‖1 ≤ 1, solution is λ = 0, x = a

I otherwise, solve piecewise-linear equation in λ:

n∑
k=1

max{0, |ak| − λ} = 1
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Any questions?
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