# Convex Optimization 

Part 4: Duality IV

Namhoon Lee

POSTECH

9 Nov 2022

## Quadratic program

Primal problem $(P \succ 0)$

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} P x \\
\text { subject to } & A x \preceq b
\end{aligned}
$$

Dual function

$$
g(\lambda)=\inf _{x}\left(x^{\top} P x+\lambda^{\top}(A x-b)\right)=-\frac{1}{4} \lambda^{\top} A P^{-1} A^{\top} \lambda-b^{\top} \lambda
$$

Dual problem

$$
\begin{aligned}
\text { maximize } & -\frac{1}{4} \lambda^{\top} A P^{-1} A^{\top} \lambda-b^{\top} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{aligned}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{a} \prec b$ for some $\tilde{x}$
- in fact, $p^{\star}=d^{\star}$ always


## Entropy maximization

Recall the entropy maximization problem

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & A x \preceq b \\
& \mathbf{1}^{\top} x=1
\end{aligned}
$$

Dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{\top} \lambda-\nu-e^{-\nu-1} \sum_{i=1}^{n} e^{-a_{i}^{\top} \lambda} \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- Slater's condition: the optimal duality gap is zero if there exists an $x \succ 0$ with $A x \preceq b$ and $\mathbf{1}^{\top} x=1$

We can simplify the dual problem by maximizing over the dual variable $\nu$ analytically. For fixed $\lambda$, the objective function is maximized when the derivative with respect to $\nu$ is zero, i.e.

$$
\nu=\log \sum_{i=1} n e^{-a_{i}^{\top} \lambda}-1
$$

Substituting this optimal value of $\nu$ into the dual problem gives

$$
\begin{array}{ll}
\text { maximize } & -b^{\top} \lambda-\log \left(\sum_{i=1}^{n} e^{-a_{i}^{\top} \lambda}\right) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

which is a geometric program (in convex form) with nonnegativity constraints

## Geometric interpretation of duality

Consider a set of values taken on by the constraint and objective functions

$$
\mathcal{G}=\left\{\left(f_{1}(x), \ldots, f_{m}(x), h_{1}(x), \ldots, h_{p}(x), f_{0}(x)\right) \in \mathbb{R}^{m} \times \mathbb{R}^{p} \times \mathbb{R} \mid x \in \mathcal{D}\right\}
$$

Optimal value $p^{\star}$ can be expressed in terms of $\mathcal{G}$

$$
p^{\star}=\inf \{t \mid(u, v, t) \in \mathcal{G}, u \preceq 0, v=0\}
$$

To evaluate the dual function, we minimize the affine function

$$
(\lambda, \nu, 1)^{\top}(u, v, t)=\sum_{i=1}^{m} \lambda_{i} u_{i}+\sum_{i=1}^{p} \nu_{i} v_{i}+t
$$

i.e., we have the dual function as

$$
g(\lambda, \nu)=\inf \left\{(\lambda, \nu, 1)^{\top}(u, v, t) \mid(u, v, t) \in \mathcal{G}\right\}
$$

If the infimum is finite, then the inequality

$$
(\lambda, \nu, 1)^{\top}(u, v, t) \geq g(\lambda, \nu)
$$

defines a supporting hyperplane to $\mathcal{G}$
Next suppose $\lambda \succeq 0$. Then, obviously, $t \geq(\lambda, \nu, 1)^{\top}(u, v, t)$ if $u \preceq 0$ and $v=0$. Therefore

$$
\begin{aligned}
p^{\star} & =\inf \{t \mid(u, v, t) \in \mathcal{G}, u \preceq 0, v=0\} \\
& \geq \inf \left\{(\lambda, \nu, 1)^{\top}(u, v, t) \mid(u, v, t) \in \mathcal{G}, u \preceq 0, v=0\right\} \\
& \geq \inf \left\{(\lambda, \nu, 1)^{\top}(u, v, t) \mid(u, v, t) \in \mathcal{G}\right\} \\
& =g(\lambda, \nu)
\end{aligned}
$$

i.e., we have weak duality

Consider a simple problem with one inequality constraint $f_{1}(x) \leq 0$
Interpretation of dual function

$$
g(\lambda)=\inf _{(u, t) \in \mathcal{G}}(t+\lambda u), \quad \text { where } \mathcal{G}=\left\{\left(f_{1}(x), f_{0}(x)\right) \mid x \in \mathcal{D}\right\}
$$



Figure: geometric interpretation of dual function and lower bound $g(\lambda) \leq p^{\star}$ figure from BV

## Optimality conditions

if strong duality holds, then $x$ is primal optimal and $(\lambda, \nu)$ is dual optimal if:

$$
\begin{array}{lr}
\text { 1. } f_{i}(x) \leq 0 \text { for } i=1, \ldots, m \text { and } h_{i}(x)=0 \text { for } i=1, \ldots, p & \text { (primal feasibility) } \\
\text { 2. } \lambda \succeq 0 & \text { (dual feasibility) } \\
\text { 3. } f_{0}(x)=g(\lambda, \nu) & \text { (strong duality) }
\end{array}
$$

conversely, these three conditions imply optimality of $x,(\lambda, \nu)$, and strong duality next, we replace condition 3 with two equivalent conditions that are easier to use

## Complementary slackness

assume $x$ satisfies the primal constraints and $\lambda \succeq 0$

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{\tilde{x} \in \mathcal{D}}\left(f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} v_{i} h_{i}(\tilde{x})\right) \\
& \leq f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x) \\
& \leq f_{0}(x)
\end{aligned}
$$

equality $f_{0}(x)=g(\lambda, \nu)$ holds if and only if the two inequalities hold with equality:

- 1st inequality: $x$ minimizes $L(\tilde{x}, \lambda, \nu)$ over $\tilde{x} \in \mathcal{D}$
- 2nd inequality: $\lambda_{i} f_{i}(x)=0$ for $i=1, \ldots, m$, i.e.,

$$
\lambda_{i}>0 \quad \Rightarrow \quad f_{i}(x)=0, \quad f_{i}(x)<0 \quad \Rightarrow \quad \lambda_{i}=0
$$

this is known as complementary slackness

## Optimality conditions

if strong duality holds, then $x$ is primal optimal and $(\lambda, \nu)$ is dual optimal if

1. $f_{i}(x) \leq 0$ for $i=1, \ldots, m$ and $h_{i}(x)=0$ for $i=1, \ldots, p \quad$ (primal feasibility)
2. $\lambda \succeq 0$
(dual feasibility)
3. $\lambda_{i} f_{i}(x)=0$ for $i=1, \ldots, m$ (complementary slackness)
4. $x$ is a minimizer of $L(\cdot, \lambda, \nu)$
conversely, these four conditions imply optimality of $x,(\lambda, \nu)$, and strong duality
if problem is convex and the functions $f_{i}, h_{i}$ are differentiable, 4 can be written as
4' the gradient of the Lagrangian with respect to $x$ vanishes:
(stationarity')

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

conditions 1,2,3,4' are known as Karush-Kuhn-Tucker (KKT) conditions

## Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem

- strong duality: $p^{\star}=d^{\star}$
- if optimal value is finite, dual optimum is attained: there exist dual optimal $\lambda, \nu$
hence, if problem is convex and Slater's constraint qualification holds:
- $x$ is optimal if and only if there exist $\lambda, \nu$ such that conditions 1-4 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4'


## Summary

- KKT conditions imply zero duality gap, and vice versa (sufficient and necessary), i.e.
$x^{\star}$ and $\left(\lambda^{\star}, \nu^{\star}\right)$ are optimal $\Longleftrightarrow x^{\star}$ and $\left(\lambda^{\star}, \nu^{\star}\right)$ satisfy the KKT conditions
- If Slater's condition holds (for a convex problem) then KKT conditions are met.
- To note further, the KKT conditions are essentially the same as the optimality conditions derived from subgradient

$$
0 \in \partial f\left(x^{\star}\right)+\sum_{i=1}^{m} \mathcal{N}_{f_{i} \leq 0}\left(x^{\star}\right)+\sum_{i=1}^{p} \mathcal{N}_{h_{i}=0}\left(x^{\star}\right)
$$

## Example: equality constrained convex quadratic minimization

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { subject to } & A x=b
\end{aligned}
$$

where $P \in S_{+}^{n}$; this problem leads to Newton's method for constrained case (later)
By KKT conditions we have

$$
A x^{\star}=b, \quad P x^{\star}+q+A^{\top} \nu^{\star}=0
$$

(note that complementary slackness and dual feasibility are vacuous)
which we can write as

$$
\left[\begin{array}{cc}
P & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

## Example: water-filling

$$
\begin{aligned}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0 \\
& \mathbf{1}^{\top} x=1
\end{aligned}
$$

- we assume that $\alpha_{i}>0$
- Lagrangian is $L(x, \lambda, \nu)=-\sum_{i} \log \left(\tilde{x}_{i}+\alpha_{i}\right)-\lambda^{\top} \tilde{x}+\nu\left(\mathbf{1}^{\top} \tilde{x}-1\right)$

Optimality conditions: $x$ is optimal iff there exist $\lambda \in \mathbb{R}^{n}, \nu \in \mathbb{R}$ such that

1. $x \succeq 0, \mathbf{1}^{\top} x=1$
2. $\lambda \succeq 0$
3. $\lambda_{i} x_{i}=0$ for $i=1, \ldots, n$
4. $x$ minimizes Lagrangian:

$$
\frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu, \quad i=1, \ldots, n
$$

## Solution

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$
- if $\nu \geq 1 / \alpha_{i}: x_{i}=0$ and $\lambda_{i}=\nu-1 / \alpha_{i}$
- two cases may be combined as

$$
x_{i}=\max \left\{0, \frac{1}{\nu}-\alpha_{i}\right\}, \quad \lambda_{i}=\max \left\{0, \nu-\frac{1}{\alpha_{i}}\right\}
$$

- determine $\nu$ from condition $\mathbf{1}^{\top} x=1$ :

$$
\sum_{i=1}^{n} \max \left\{0, \frac{1}{\nu}-\alpha_{i}\right\}=1
$$

Interpretation

- $n$ patches; level of patch $i$ is at height $\alpha_{i}$
- flood area with unit amount of water
- resulting level is $1 / \nu^{\star}$


Figure: Illustration of water-filling algorithm; figure from BV

## Example: projection on 1-norm ball

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|x-a\|_{2}^{2} \\
\text { subject to } & \|x\|_{1} \leq 1
\end{aligned}
$$

Optimality conditions

1. $\|x\|_{1} \leq 1$
2. $\lambda \geq 0$
3. $\lambda\left(1-\|x\|_{1}\right)=0$
4. $x$ minimizes Lagrangian

$$
\begin{aligned}
L(\tilde{x}, \lambda) & =\frac{1}{2}\|\tilde{x}-a\|_{2}^{2}+\lambda\left(\|\tilde{x}\|_{1}-1\right) \\
& =\sum_{k=1}^{n}\left(\frac{1}{2}\left(\tilde{x}_{k}-a_{k}\right)^{2}+\lambda\left|\tilde{x}_{k}\right|\right)-\lambda
\end{aligned}
$$

Solution

- optimization problem in condition 4 is separable; solution for $\lambda \geq 0$ is

$$
x_{k}= \begin{cases}a_{k}-\lambda & a_{k} \geq \lambda \\ 0 & -\lambda \leq a_{k} \leq \lambda \\ a_{k}+\lambda & a_{k} \leq-\lambda\end{cases}
$$

- therefore $\|x\|_{1}=\sum_{k}\left|x_{k}\right|=\sum_{k} \max \left\{0,\left|a_{k}\right|-\lambda\right\}$
- if $\|a\|_{1} \leq 1$, solution is $\lambda=0, x=a$
- otherwise, solve piecewise-linear equation in $\lambda$ :

$$
\sum_{k=1}^{n} \max \left\{0,\left|a_{k}\right|-\lambda\right\}=1
$$

Any questions?

