Convex Optimization Part 4: Duality IV

Namhoon Lee

POSTECH

9 Nov 2022

Quadratic program Primal problem $(P \succ 0)$

 $\begin{array}{ll} \text{minimize} & x^\top P x\\ \text{subject to} & Ax \preceq b \end{array}$

Dual function

$$g(\lambda) = \inf_{x} \left(x^{\top} P x + \lambda^{\top} (A x - b) \right) = -\frac{1}{4} \lambda^{\top} A P^{-1} A^{\top} \lambda - b^{\top} \lambda$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -\frac{1}{4}\lambda^{\top}AP^{-1}A^{\top}\lambda - b^{\top}\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

▶ from Slater's condition: $p^* = d^*$ if $A\tilde{a} \prec b$ for some \tilde{x} ▶ in fact, $p^* = d^*$ always

Entropy maximization

Recall the entropy maximization problem

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Ax \leq b$
 $\mathbf{1}^{\top} x = 1$

Dual problem

maximize
$$-b^{\top}\lambda - \nu - e^{-\nu-1}\sum_{i=1}^{n} e^{-a_i^{\top}\lambda}$$

subject to $\lambda \succeq 0$

Slater's condition: the optimal duality gap is zero if there exists an $x \succ 0$ with $Ax \preceq b$ and $\mathbf{1}^{\top}x = 1$

We can simplify the dual problem by maximizing over the dual variable ν analytically. For fixed λ , the objective function is maximized when the derivative with respect to ν is zero, *i.e.*

$$\nu = \log \sum_{i=1} n e^{-a_i^\top \lambda} - 1$$

Substituting this optimal value of ν into the dual problem gives

maximize
$$-b^{\top}\lambda - \log\left(\sum_{i=1}^{n} e^{-a_i^{\top}\lambda}\right)$$

subject to $\lambda \succeq 0$

which is a geometric program (in convex form) with nonnegativity constraints

Geometric interpretation of duality

Consider a set of values taken on by the constraint and objective functions

$$\mathcal{G} = \left\{ (f_1(x), \dots, f_m(x), h_1(x), \dots, h_p(x), f_0(x)) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid x \in \mathcal{D} \right\}$$

Optimal value p^{\star} can be expressed in terms of $\mathcal G$

$$p^{\star} = \inf\{t \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0\}$$

To evaluate the dual function, we minimize the affine function

$$(\lambda,\nu,1)^{\top}(u,v,t) = \sum_{i=1}^{m} \lambda_i u_i + \sum_{i=1}^{p} \nu_i v_i + t$$

i.e., we have the dual function as

$$g(\lambda,\nu) = \inf\{(\lambda,\nu,1)^{\top}(u,v,t) \mid (u,v,t) \in \mathcal{G}\}$$

If the infimum is finite, then the inequality

$$(\lambda, \nu, 1)^{\top}(u, v, t) \ge g(\lambda, \nu)$$

defines a supporting hyperplane to ${\mathcal G}$

Next suppose $\lambda \succeq 0$. Then, obviously, $t \ge (\lambda, \nu, 1)^{\top}(u, v, t)$ if $u \preceq 0$ and v = 0. Therefore

$$p^{\star} = \inf\{t \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0\}$$

$$\geq \inf\{(\lambda, \nu, 1)^{\top}(u, v, t) \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0\}$$

$$\geq \inf\{(\lambda, \nu, 1)^{\top}(u, v, t) \mid (u, v, t) \in \mathcal{G}\}$$

$$= g(\lambda, \nu)$$

i.e., we have weak duality

Consider a simple problem with one inequality constraint $f_1(x) \leq 0$

Interpretation of dual function

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t+\lambda u), \quad \text{where } \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$$

Figure: geometric interpretation of dual function and lower bound $g(\lambda) \leq p^*$ figure from BV

Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for i = 1, ..., p(primal feasibility)2. $\lambda \succeq 0$ (dual feasibility)3. $f_0(x) = g(\lambda, \nu)$ (strong duality)

conversely, these three conditions imply optimality of $x, (\lambda, \nu)$, and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use

Complementary slackness

assume x satisfies the primal constraints and $\lambda \succeq 0$

$$g(\lambda,\nu) = \inf_{\tilde{x}\in\mathcal{D}} \left(f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p v_i h_i(\tilde{x}) \right)$$
$$\leq f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x)$$
$$\leq f_0(x)$$

equality $f_0(x) = g(\lambda, \nu)$ holds if and only if the two inequalities hold with equality:

- ▶ 1st inequality: x minimizes $L(\tilde{x}, \lambda, \nu)$ over $\tilde{x} \in \mathcal{D}$
- 2nd inequality: $\lambda_i f_i(x) = 0$ for $i = 1, \dots, m$, *i.e.*,

$$\lambda_i > 0 \quad \Rightarrow \quad f_i(x) = 0, \qquad f_i(x) < 0 \quad \Rightarrow \quad \lambda_i = 0$$

this is known as complementary slackness

Optimality conditions

if strong duality holds, then x is primal optimal and (λ,ν) is dual optimal if

- 1. $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for i = 1, ..., p (primal feasibility) 2. $\lambda \ge 0$ (dual feasibility)
- 3. $\lambda_i f_i(x) = 0$ for i = 1, ..., m (complementary slackness) 4. x is a minimizer of $L(\cdot, \lambda, \nu)$ (stationarity)

conversely, these four conditions imply optimality of $x, (\lambda, \nu)$, and strong duality

if problem is convex and the functions f_i, h_i are differentiable, 4 can be written as 4' the gradient of the Lagrangian with respect to x vanishes: (stationarity')

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

conditions 1,2,3,4' are known as Karush-Kuhn-Tucker (KKT) conditions

Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem

• strong duality:
$$p^{\star} = d^{\star}$$

 \blacktriangleright if optimal value is finite, dual optimum is attained: there exist dual optimal λ, ν

hence, if problem is convex and Slater's constraint qualification holds:

- \blacktriangleright x is optimal if and only if there exist λ, ν such that conditions 1-4 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4'

Summary

KKT conditions imply zero duality gap, and vice versa (sufficient and necessary), *i.e.*

 x^{\star} and $(\lambda^{\star}, \nu^{\star})$ are optimal $\iff x^{\star}$ and $(\lambda^{\star}, \nu^{\star})$ satisfy the KKT conditions

If Slater's condition holds (for a convex problem) then KKT conditions are met.
 To note further, the KKT conditions are essentially the same as the optimality conditions derived from subgradient

$$0 \in \partial f(x^{\star}) + \sum_{i=1}^{m} \mathcal{N}_{f_i \le 0}(x^{\star}) + \sum_{i=1}^{p} \mathcal{N}_{h_i = 0}(x^{\star})$$

Example: equality constrained convex quadratic minimization

minimize
$$\frac{1}{2}x^{\top}Px + q^{\top}x + r$$

subject to $Ax = b$,

where $P \in S^n_+$; this problem leads to Newton's method for constrained case (later) By KKT conditions we have

$$Ax^{\star} = b, \quad Px^{\star} + q + A^{\top}\nu^{\star} = 0$$

(note that complementary slackness and dual feasibility are vacuous)

which we can write as

$$\begin{bmatrix} P & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} x^{\star} \\ \nu^{\star} \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

Example: water-filling

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0$
 $\mathbf{1}^{\top} x = 1$

▶ we assume that
$$\alpha_i > 0$$

▶ Lagrangian is $L(x, \lambda, \nu) = -\sum_i \log(\tilde{x}_i + \alpha_i) - \lambda^\top \tilde{x} + \nu(\mathbf{1}^\top \tilde{x} - 1)$

Optimality conditions: x is optimal iff there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that 1. $x \succeq 0$, $\mathbf{1}^\top x = 1$ 2. $\lambda \succeq 0$ 3. $\lambda_i x_i = 0$ for $i = 1, \dots, n$ 4. x minimizes Lagrangian:

$$\frac{1}{x_i + \alpha_i} + \lambda_i = \nu, \quad i = 1, \dots, n$$

Solution

$$\blacktriangleright \ \text{ if } \nu < 1/\alpha_i: \lambda_i = 0 \ \text{and} \ x_i = 1/\nu - \alpha_i$$

$$\blacktriangleright \text{ if } \nu \geq 1/\alpha_i: x_i = 0 \text{ and } \lambda_i = \nu - 1/\alpha_i$$

two cases may be combined as

$$x_i = \max\{0, \frac{1}{\nu} - \alpha_i\}, \quad \lambda_i = \max\{0, \nu - \frac{1}{\alpha_i}\}$$

• determine ν from condition $\mathbf{1}^{\top}x = 1$:

$$\sum_{i=1}^{n} \max\{0, \frac{1}{\nu} - \alpha_i\} = 1$$

Interpretation

- *n* patches; level of patch *i* is at height α_i
- flood area with unit amount of water
- ▶ resulting level is $1/\nu^*$

Figure: Illustration of water-filling algorithm; figure from BV

Example: projection on 1-norm ball

minimize
$$\frac{1}{2} \|x - a\|_2^2$$

subject to $\|x\|_1 \le 1$

Optimality conditions

- **1**. $||x||_1 \le 1$
- **2**. $\lambda \ge 0$
- **3**. $\lambda(1 \|x\|_1) = 0$
- 4. x minimizes Lagrangian

$$L(\tilde{x}, \lambda) = \frac{1}{2} \|\tilde{x} - a\|_{2}^{2} + \lambda(\|\tilde{x}\|_{1} - 1)$$

= $\sum_{k=1}^{n} \left(\frac{1}{2} (\tilde{x}_{k} - a_{k})^{2} + \lambda |\tilde{x}_{k}| \right) - \lambda$

Solution

• optimization problem in condition 4 is separable; solution for $\lambda \ge 0$ is

$$x_{k} = \begin{cases} a_{k} - \lambda & a_{k} \ge \lambda \\ 0 & -\lambda \le a_{k} \le \lambda \\ a_{k} + \lambda & a_{k} \le -\lambda \end{cases}$$

• therefore
$$||x||_1 = \sum_k |x_k| = \sum_k \max\{0, |a_k| - \lambda\}$$

• if
$$||a||_1 \leq 1$$
, solution is $\lambda = 0$, $x = a$

• otherwise, solve piecewise-linear equation in λ :

$$\sum_{k=1}^{n} \max\{0, |a_k| - \lambda\} = 1$$

Any questions?