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Quadratic program
Primal problem (P > 0)

minimize z' Pz
subject to Ax <b

Dual function

g(\) =inf (z" Pz + A" (Az — b)) = —iATAP_lAT)\ —b'A

xz

Dual problem

1
maximize — EATAP”ATA DY
subject to A >0

» from Slater’s condition: p* = d* if Aa < b for some &
» in fact, p* = d* always
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Entropy maximization
Recall the entropy maximization problem

n
minimize E x; log x;

i=1
subject to Ax <b
17z=1
Dual problem
n T
maximize —b'\A—v—e Y71 Z e~ % A
=1

subject to A >0

> Slater's condition: the optimal duality gap is zero if there exists an x > 0 with
Az <band1'z=1
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We can simplify the dual problem by maximizing over the dual variable v analytically.
For fixed A, the objective function is maximized when the derivative with respect to v

is zero, I.e.
T
v = log E ne %A —1
i=1

Substituting this optimal value of v into the dual problem gives

n
maximize —b'\— log (Z e_“iTA)
=1
subject to A =0

which is a geometric program (in convex form) with nonnegativity constraints
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Geometric interpretation of duality

Consider a set of values taken on by the constraint and objective functions
g = {(fl(a;),...,fm(x),hl(x),...,hp(a:),fo(a:)) ER"XRP xR |z € D}
Optimal value p* can be expressed in terms of G
p* =inf{t | (u,v,t) € G,u < 0,v =0}

To evaluate the dual function, we minimize the affine function

()\yl (u,v,t) Zkuz ZV,UZ-i-t

i.e., we have the dual function as

g\ v) =inf{(\ v, 1) (u,0,t) | (u,v,t) € G}
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If the infimum is finite, then the inequality
A 1) T (u,0,1) > g(A,v)

defines a supporting hyperplane to G

Next suppose A = 0. Then, obviously, t > (X, v, 1) " (u,v,t) if u <0 and v = 0.

Therefore

* =inf{t | (u,v,t) € G,u < 0,v =0}

> inf{(\, v, 1) (u,v,t) | (u,v,t) € G,u=<0,v=0}
inf{(\, v, 1) (u,v,t) | (u,v,t) € G}
g\ v)

S
I

v

i.e., we have weak duality
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Consider a simple problem with one inequality constraint fi(z) <0

Interpretation of dual function

N = inf (¢4 M),
g\ (u{geg( u)

where G = {(f1(%), fo(2)) | # € D}

Figure: geometric interpretation of dual function and lower bound g(\) < p* figure from BV

Aou+t = g(A2) N

Mu+t=g(\*)

Au+t=g(h)—
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Optimality conditions

if strong duality holds, then z is primal optimal and (\, v) is dual optimal if:

1. filx) <O0fori=1,...,mand hj(z)=0fori=1,...,p (primal feasibility)
2.0%0 (dual feasibility)
3. folz) =g\, v) (strong duality)

conversely, these three conditions imply optimality of z, (A, v), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness
assume x satisfies the primal constraints and A > 0

g(\v) = inf ( +ZA fil@ —i—Zvihi(j}))
< fO +Z)\ fz Z z(m)

=1
< fo(z)

equality fo(x) = g(A, v) holds if and only if the two inequalities hold with equality:
» 1st inequality:  minimizes L(Z,\,v) over & € D
» 2nd inequality: \;fi(z) =0fori=1,...,m, ie,

N>0 = f,(x) =0, fz(a:) <0 = X\=0

this is known as complementary slackness
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Optimality conditions
if strong duality holds, then z is primal optimal and (\, v) is dual optimal if

1. filx) <O0fori=1,...,mand hj(z)=0fori=1,...,p (primal feasibility)
2.0%0 (dual feasibility)
3. Nifi(lx)=0fori=1,....,m (complementary slackness)
4. x is a minimizer of L(-, \,v) (stationarity)

conversely, these four conditions imply optimality of x, (A, v), and strong duality

if problem is convex and the functions f;, h; are differentiable, 4 can be written as

4" the gradient of the Lagrangian with respect to x vanishes: (stationarity')

V folw +Z/\ v fi(w +Zyzwl

conditions 1,2,3,4" are known as Karush-Kuhn-Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem
> strong duality: p* = d*
> if optimal value is finite, dual optimum is attained: there exist dual optimal A, v

hence, if problem is convex and Slater's constraint qualification holds:
> 1z is optimal if and only if there exist A, v such that conditions 1-4 are satisfied

> if functions are differentiable, condition 4 can be replaced with 4’
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Summary

» KKT conditions imply zero duality gap, and vice versa (sufficient and necessary),
i.e.

x* and (\*, %) are optimal <= " and (\*, ") satisfy the KKT conditions

> If Slater’s condition holds (for a convex problem) then KKT conditions are met.

» To note further, the KKT conditions are essentially the same as the optimality
conditions derived from subgradient

0€df(x +2Nf<o —i—ZNh —o(x

=1
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Example: equality constrained convex quadratic minimization

1
minimize ixTPx +q'z+r
subject to Ax = b,

where P € S'; this problem leads to Newton's method for constrained case (later)

By KKT conditions we have
Az*=b, Pz*+q+ATv* =0

(note that complementary slackness and dual feasibility are vacuous)

2B -]

which we can write as
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Example: water-filling

n
minimize — Z log(z; + o)
i=1

subject to x>0
1Tz=1
> we assume that o; > 0
> Lagrangian is L(z, A\, v) = — >, log(Z; + o) = A2 +v(175 — 1)

Optimality conditions: x is optimal iff there exist A € R", v € R such that
1.xz>0,1Tz=1
2.2>=0
3. )\Zm:Oforz: 1,...,n
4. x minimizes Lagrangian:
1

T; + oy

+X=v, i=1,...,n
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Solution
> ifv<l/a;:N=0and z; =1/v—
> ifv> 1/ai:x¢:03nd )\l‘:V—l/Oéi

P two cases may be combined as
1 1
xr; = max{0, — —a;}, A; =max{0,v — —}
14 (673
» determine v from condition 1Tz = 1:

- 1

E max{0,— —a;} =1
v

=1

Interpretation
» n patches; level of patch i is at height «;
» flood area with unit amount of water

> resulting level is 1/v*
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1/v*
X

i

1

Figure: Illustration of water-filling algorithm; figure from BV
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Example: projection on 1-norm ball

1
minimize 5”1‘ —all5
subject to  ||z||; <1
Optimality conditions
ol < 1
2.2>20
3. (1= [lzll) = 0
4. x minimizes Lagrangian

[y

. L. -
L@ ) = 5117 = allz + Azl - 1)

_Z( I — ap) +)\|:ik|>—
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Solution

» optimization problem in condition 4 is separable; solution for A > 0 is

ap — A ag > A
=<0 “A<ap <A
ag + A ap < —A

» therefore ||z||1 = > |2k = D, max{0, |ag| — A}
» if ||alj; <1, solutionis A =0, x =a

> otherwise, solve piecewise-linear equation in A:

> max{0, |ag| — A} =1

k=1
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Any questions?
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