Convex Optimization

Part 4: Duality V

Namhoon Lee
POSTECH

14 Nov 2022

Conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{\top} x-f(x)\right)
$$

f^{*} is closed and convex (even when f is not)
Fenchel's inequality: the definition implies that

$$
f(x)+f^{*}(y) \geq x^{\top} y \quad \text { for all } x, y
$$

this is an extension to non-quadratic convex f of the inequality

$$
\frac{1}{2} x^{\top} x+\frac{1}{2} y^{\top} y \geq x^{\top} y
$$

Calculus rules

Separable sum

$$
f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right)+h\left(x_{2}\right) \quad f^{*}\left(y_{1}, y_{2}\right)=g^{*}\left(y_{1}\right)+h^{*}\left(y_{2}\right)
$$

Scalar multiplication $(\alpha>0)$

$$
\begin{array}{lr}
f(x)=\alpha g(x) & f^{*}(y)=\alpha g^{*}(y / \alpha) \\
f(x)=\alpha g(x / \alpha) & f^{*}(y)=\alpha g^{*}(y)
\end{array}
$$

- the operation $f(x)=\alpha g(x / \alpha)$ is sometimes called "right scalar multiplication"
- a convenient notation is $f=g \alpha$ for the function $(g \alpha)(x)=\alpha g(x / \alpha)$
- conjugates can be written concisely as $(g \alpha)^{*}=\alpha g^{*}$ and $(\alpha g)^{*}=g^{*} \alpha$

Calculus rules

Addition to affine function

$$
f(x)=g(x)+a^{\top} x+b \quad f^{*}(y)=g^{*}(y-a)-b
$$

Translation of argument

$$
f(x)=g(x-b) \quad f^{*}(y)=b^{\top} y+g^{*}(y)
$$

Composition with invertible linear mapping: if A is square and nonsingular

$$
f(x)=g(A x) \quad f^{*}(y)=g^{*}\left(A^{-\top} y\right)
$$

Infimal convolution

$$
f(x)=\inf _{u+v=x}(g(u)+h(v)) \quad f^{*}(y)=g^{*}(y)+h^{*}(y)
$$

Conjugates and subgradients

if f is closed and convex, then

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y) \quad \Longleftrightarrow \quad x^{\top} y=f(x)+f^{*}(y)
$$

Proof.
if $y \in \partial f(x)$, then $f^{*}(y)=\sup _{u}\left(y^{\top} u-f(u)\right)=y^{\top} x-f(x)$; hence

$$
\begin{aligned}
f^{*}(v) & =\sup _{u}\left(v^{\top} u-f(u)\right) \\
& \geq v^{\top} x-f(x) \\
& =x^{\top}(v-y)-f(x)+y^{\top} x \\
& =f^{*}(y)+x^{\top}(v-y)
\end{aligned}
$$

this holds for all v; therefore, $x \in \partial f^{*}(y)$
reverse implication $x \in \partial f^{*}(y) \Longrightarrow y \in \partial f(x)$ follows from $f^{* *}=f$

Conjugate of strongly convex function

assume f is closed and strongly convex with parameter $\mu>0$ for the norm $\|\cdot\|$

- f^{*} is defined for all y (i.e., $\operatorname{dom} f^{*}=\mathbb{R}^{n}$)
- f^{*} is differentiable everywhere, with gradient

$$
\nabla f^{*}(y)=\underset{x}{\arg \max }\left(y^{\top} x-f(x)\right)
$$

- ∇f^{*} is Lipschitz continuous with constant $1 / \mu$ for the dual norm $\|\cdot\|_{*}$:

$$
\left\|\nabla f^{*}(y)-\nabla f^{*}\left(y^{\prime}\right)\right\| \leq \frac{1}{\mu}\left\|y-y^{\prime}\right\|_{*} \quad \text { for all } y \text { and } y^{\prime}
$$

Proof.

if f is strongly convex and closed

- $y^{\top} x-f(x)$ has a unique maximizer x for every y
- x maximizes $y^{\top} x-f(x)$ if and only if $y \in \partial f(x)$;

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y)
$$

hence $\nabla f^{*}(y)=\arg \max _{x}\left(y^{\top} x-f(x)\right)$

- from first-order condition: if $y \in \partial f(x), y^{\prime} \in \partial f\left(x^{\prime}\right)$:

$$
\begin{aligned}
f\left(x^{\prime}\right) & \geq f(x)+y^{\top}\left(x^{\prime}-x\right)+\frac{\mu}{2}\left\|x^{\prime}-x\right\|^{2} \\
f(x) & \geq f\left(x^{\prime}\right)+\left(y^{\prime}\right)^{\top}\left(x-x^{\prime}\right)+\frac{\mu}{2}\left\|x^{\prime}-x\right\|^{2}
\end{aligned}
$$

combining these inequalities shows

$$
\mu\left\|x-x^{\prime}\right\|^{2} \leq\left(y-y^{\prime}\right)^{\top}\left(x-x^{\prime}\right) \leq\left\|y-y^{\prime}\right\|_{*}\left\|x-x^{\prime}\right\|
$$

- now substitute $x=\nabla f^{*}(y)$ and $x^{\prime}=\nabla f^{*}\left(y^{\prime}\right)$

Moreau decomposition

$$
x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x) \quad \text { for all } x
$$

- follows from properties of conjugates and subgradients:

$$
\begin{aligned}
u=\operatorname{prox}_{f}(x) & \Longleftrightarrow x-u \in \partial f(u) \\
& \Longleftrightarrow u \in \partial f^{*}(x-u) \\
& \Longleftrightarrow x-u=\operatorname{prox}_{f^{*}}(x)
\end{aligned}
$$

- generalizes decomposition by orthogonal projection on subspaces:

$$
x=\mathrm{P}_{L}(x)+\mathrm{P}_{L^{\perp}}(x)
$$

if L is a subspace, L^{\perp} its orthogonal complement (this is the Moreau decomposition with $f=\delta_{L}, f^{*}=\delta_{L^{\perp}}$)

Extended Moreau decomposition

$$
\text { for } \lambda>0 \text {, }
$$

$$
x=\operatorname{prox}_{\lambda f}(x)+\lambda \operatorname{prox}_{\lambda^{-1} f^{*}}(x / \lambda) \quad \text { for all } x
$$

Proof.
apply Moreau decomposition to λf

$$
\begin{aligned}
x & =\operatorname{prox}_{\lambda f}(x)+\operatorname{prox}_{(\lambda f)^{*}}(x) \\
& =\operatorname{prox}_{\lambda f}(x)+\lambda \operatorname{prox}_{\lambda^{-1} f^{*}}(x / \lambda)
\end{aligned}
$$

second line uses $(\lambda f)^{*}(y)=\lambda f^{*}(y / \lambda)$ and that for $f(x)=\lambda g(x / \lambda)$, $\operatorname{prox}_{f}(x)=\lambda \operatorname{prox}_{\lambda^{-1} g}(x / \lambda)$

Duality

$$
\begin{array}{lll}
\text { primal: } & \text { minimize } & f(x)+g(A x) \\
\text { dual: } & \text { maximize } & -g^{*}(z)-f^{*}\left(-A^{\top} z\right)
\end{array}
$$

- follows from Lagrange duality applied to reformulated primal

$$
\begin{aligned}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & A x=y
\end{aligned}
$$

dual function for the formulated problem is:

$$
\inf _{x, y}\left(f(x)+z^{\top} A x+g(y)-z^{\top} y\right)=-f^{*}\left(-A^{\top} z\right)-g^{*}(z)
$$

- Slater's condition (for convex f, g): strong duality holds if there exists an \tilde{x} with

$$
\tilde{x} \in \operatorname{int} \operatorname{dom} f, \quad A \tilde{x} \in \operatorname{int} \operatorname{dom} g
$$

this also guarantees that the dual optimum is attained if optimal value is finite

Set constraint

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & A x-b \in C
\end{aligned}
$$

Primal and dual problem

$$
\begin{array}{lll}
\text { primal: } & \text { minimize } & f(x)+\delta_{C}(A x-b) \\
\text { dual: } & \text { maximize } & -b^{\top} z-\delta_{C}^{*}(z)-f^{*}\left(-A^{\top} z\right)
\end{array}
$$

Examples

	constraint	set C	support function $\delta_{C}^{*}(z)$						
equality	$A x=b$	$\{0\}$	0						
norm inequality	$\\|A x-b\\| \leq 1$	unit $\\|\cdot\\|$-ball	$\\|z\\|_{*}$						
conic inequality	$A x \preceq_{K} b$	$-K$	$\delta_{K^{*}}(z)$						

Norm regularization

$$
\operatorname{minimize} \quad f(x)+\|A x-b\|
$$

- take $g(y)=\|y-b\|$ in general problem

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

- conjugate of $\|\cdot\|$ is indicator of unit ball for dual norm

$$
g^{*}(z)=b^{\top} z+\delta_{B}(z) \quad \text { where } B=\left\{z \mid\|z\|_{*} \leq 1\right\}
$$

- hence, dual problem can be written as

$$
\begin{aligned}
\operatorname{maximize} & -b^{\top} z-f^{*}\left(-A^{\top} z\right) \\
\text { subject to } & \|z\|_{*} \leq 1
\end{aligned}
$$

Optimality conditions

$$
\begin{aligned}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & A x=y
\end{aligned}
$$

assume f, g are convex and Slater's condition holds
Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: $x \in \operatorname{dom} f$ and $y=A x \in \operatorname{dom} g$
2. x and $y=A x$ are minimizers of the Lagrangian $f(x)+z^{\top} A x+g(y)-z^{\top} y$:

$$
-A^{\top} z \in \partial f(x), \quad z \in \partial g(A x)
$$

if g is closed, this can be written symmetrically as

$$
-A^{\top} z \in \partial f(x), \quad A x \in \partial g^{*}(z)
$$

Any questions?

