Convex Optimization Part 4: Duality V

Namhoon Lee

POSTECH

14 Nov 2022

Conjugate function

the conjugate of a function $f\ \mbox{is}$

$$f^*(y) = \sup_{x \in \text{dom } f} (y^\top x - f(x))$$

 f^* is closed and convex (even when f is not)

Fenchel's inequality: the definition implies that

$$f(x) + f^*(y) \ge x^\top y$$
 for all x, y

this is an extension to non-quadratic convex \boldsymbol{f} of the inequality

$$\frac{1}{2}x^{\top}x + \frac{1}{2}y^{\top}y \ge x^{\top}y$$

Calculus rules

Separable sum

$$f(x_1, x_2) = g(x_1) + h(x_2) \qquad \qquad f^*(y_1, y_2) = g^*(y_1) + h^*(y_2)$$

Scalar multiplication ($\alpha > 0$)

$$f(x) = \alpha g(x) \qquad f^*(y) = \alpha g^*(y/\alpha)$$

$$f(x) = \alpha g(x/\alpha) \qquad f^*(y) = \alpha g^*(y)$$

▶ the operation $f(x) = \alpha g(x/\alpha)$ is sometimes called "right scalar multiplication"

- ▶ a convenient notation is $f = g\alpha$ for the function $(g\alpha)(x) = \alpha g(x/\alpha)$
- conjugates can be written concisely as $(g\alpha)^* = \alpha g^*$ and $(\alpha g)^* = g^* \alpha$

Calculus rules

Addition to affine function

$$f(x) = g(x) + a^{\top}x + b$$
 $f^*(y) = g^*(y - a) - b$

Translation of argument

$$f(x) = g(x - b)$$
 $f^*(y) = b^{\top}y + g^*(y)$

Composition with invertible linear mapping: if A is square and nonsingular

$$f(x) = g(Ax)$$
 $f^*(y) = g^*(A^{-\top}y)$

Infimal convolution

$$f(x) = \inf_{u+v=x} (g(u) + h(v)) \qquad \qquad f^*(y) = g^*(y) + h^*(y)$$

Conjugates and subgradients

if f is closed and convex, then

$$y \in \partial f(x) \quad \iff \quad x \in \partial f^*(y) \quad \iff \quad x^\top y = f(x) + f^*(y)$$

Proof.

if $y \in \partial f(x)$, then $f^*(y) = \sup_u (y^\top u - f(u)) = y^\top x - f(x)$; hence

$$f^*(v) = \sup_u (v^\top u - f(u))$$

$$\geq v^\top x - f(x)$$

$$= x^\top (v - y) - f(x) + y^\top x$$

$$= f^*(y) + x^\top (v - y)$$

this holds for all v; therefore, $x\in\partial f^*(y)$

reverse implication $x\in\partial f^*(y)\Longrightarrow y\in\partial f(x)$ follows from $f^{**}=f$

Conjugate of strongly convex function

assume f is closed and strongly convex with parameter $\mu>0$ for the norm $\|\cdot\|$

- f^* is defined for all y (*i.e.*, dom $f^* = \mathbb{R}^n$)
- f^* is differentiable everywhere, with gradient

$$\nabla f^*(y) = \operatorname*{arg\,max}_x \left(y^\top x - f(x) \right)$$

• ∇f^* is Lipschitz continuous with constant $1/\mu$ for the dual norm $\|\cdot\|_*$:

$$\|
abla f^*(y) -
abla f^*(y')\| \leq rac{1}{\mu} \|y - y'\|_*$$
 for all y and y'

Proof.

if f is strongly convex and closed

• $y^{\top}x - f(x)$ has a unique maximizer x for every y

• x maximizes $y^{\top}x - f(x)$ if and only if $y \in \partial f(x)$;

$$y \in \partial f(x) \iff x \in \partial f^*(y)$$

hence $\nabla f^*(y) = \arg \max_x (y^\top x - f(x))$

From first-order condition: if $y \in \partial f(x)$, $y' \in \partial f(x')$:

$$f(x') \ge f(x) + y^{\top}(x'-x) + \frac{\mu}{2} ||x'-x||^2$$

$$f(x) \ge f(x') + (y')^{\top}(x-x') + \frac{\mu}{2} ||x'-x||^2$$

combining these inequalities shows

$$\mu \|x - x'\|^2 \le (y - y')^\top (x - x') \le \|y - y'\|_* \|x - x'\|$$

 \blacktriangleright now substitute $x = \nabla f^*(y)$ and $x' = \nabla f^*(y')$

Moreau decomposition

$$x = \operatorname{prox}_{f}(x) + \operatorname{prox}_{f^*}(x)$$
 for all x

follows from properties of conjugates and subgradients:

$$u = \operatorname{prox}_{f}(x) \quad \Longleftrightarrow \quad x - u \in \partial f(u)$$
$$\iff \quad u \in \partial f^{*}(x - u)$$
$$\iff \quad x - u = \operatorname{prox}_{f^{*}}(x)$$

generalizes decomposition by orthogonal projection on subspaces:

$$x = \mathcal{P}_L(x) + \mathcal{P}_{L^{\perp}}(x)$$

if L is a subspace, L^{\perp} its orthogonal complement (this is the Moreau decomposition with $f = \delta_L, f^* = \delta_{L^{\perp}}$)

Extended Moreau decomposition

for $\lambda > 0$,

$$x = \mathrm{prox}_{\lambda f}(x) + \lambda \, \mathrm{prox}_{\lambda^{-1}f^*}(x/\lambda) \quad \text{for all } x$$

Proof.

apply Moreau decomposition to λf

$$x = \operatorname{prox}_{\lambda f}(x) + \operatorname{prox}_{(\lambda f)^*}(x)$$
$$= \operatorname{prox}_{\lambda f}(x) + \lambda \operatorname{prox}_{\lambda^{-1} f^*}(x/\lambda)$$

second line uses $(\lambda f)^*(y) = \lambda f^*(y/\lambda)$ and that for $f(x) = \lambda g(x/\lambda)$, $\operatorname{prox}_f(x) = \lambda \operatorname{prox}_{\lambda^{-1}g}(x/\lambda)$

Duality

primal: minimize f(x) + g(Ax)dual: maximize $-g^*(z) - f^*(-A^{\top}z)$

follows from Lagrange duality applied to reformulated primal

 $\begin{array}{ll}\text{minimize} & f(x) + g(y)\\ \text{subject to} & Ax = y \end{array}$

dual function for the formulated problem is:

$$\inf_{x,y} \left(f(x) + z^{\top} A x + g(y) - z^{\top} y \right) = -f^*(-A^{\top} z) - g^*(z)$$

Slater's condition (for convex f, g): strong duality holds if there exists an \tilde{x} with

 $\tilde{x} \in \operatorname{int} \operatorname{dom} f, \qquad A \tilde{x} \in \operatorname{int} \operatorname{dom} g$

this also guarantees that the dual optimum is attained if optimal value is finite

Set constraint

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax - b \in C \end{array}$

Primal and dual problem

primal:	minimize	$f(x) + \delta_C(Ax - b)$
dual:	maximize	$-b^\top z - \delta^*_C(z) - f^*(-A^\top z)$

Examples

	constraint	set C	support function $\delta^*_C(z)$
equality	Ax = b	$\{0\}$	0
norm inequality	$\ Ax - b\ \le 1$	unit $\ \cdot\ $ -ball	$ z _{*}$
conic inequality	$Ax \preceq_K b$	-K	$\delta_{K^*}(z)$

Norm regularization

minimize f(x) + ||Ax - b||

▶ take g(y) = ||y - b|| in general problem

minimize f(x) + g(Ax)

▶ conjugate of || · || is indicator of unit ball for dual norm

 $g^*(z) = b^\top z + \delta_B(z)$ where $B = \{z \mid ||z||_* \le 1\}$

hence, dual problem can be written as

maximize
$$-b^{\top}z - f^*(-A^{\top}z)$$

subject to $\|z\|_* \le 1$

Optimality conditions

minimize f(x) + g(y)subject to Ax = y

assume f,g are convex and Slater's condition holds

Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: $x \in \operatorname{dom} f$ and $y = Ax \in \operatorname{dom} g$

2. x and y = Ax are minimizers of the Lagrangian $f(x) + z^{\top}Ax + g(y) - z^{\top}y$:

$$-A^{\top}z \in \partial f(x), \qquad z \in \partial g(Ax)$$

if g is closed, this can be written symmetrically as

$$-A^{\top}z \in \partial f(x), \qquad Ax \in \partial g^*(z)$$

Any questions?