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Conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(y>x− f(x))

f∗ is closed and convex (even when f is not)

Fenchel’s inequality: the definition implies that

f(x) + f∗(y) ≥ x>y for all x, y

this is an extension to non-quadratic convex f of the inequality

1

2
x>x+

1

2
y>y ≥ x>y
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Calculus rules

Separable sum

f(x1, x2) = g(x1) + h(x2) f∗(y1, y2) = g∗(y1) + h∗(y2)

Scalar multiplication (α > 0)

f(x) = αg(x) f∗(y) = αg∗(y/α)

f(x) = αg(x/α) f∗(y) = αg∗(y)

I the operation f(x) = αg(x/α) is sometimes called “right scalar multiplication”

I a convenient notation is f = gα for the function (gα)(x) = αg(x/α)

I conjugates can be written concisely as (gα)∗ = αg∗ and (αg)∗ = g∗α
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Calculus rules
Addition to affine function

f(x) = g(x) + a>x+ b f∗(y) = g∗(y − a)− b

Translation of argument

f(x) = g(x− b) f∗(y) = b>y + g∗(y)

Composition with invertible linear mapping: if A is square and nonsingular

f(x) = g(Ax) f∗(y) = g∗(A−>y)

Infimal convolution

f(x) = inf
u+v=x

(g(u) + h(v)) f∗(y) = g∗(y) + h∗(y)
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Conjugates and subgradients
if f is closed and convex, then

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y) ⇐⇒ x>y = f(x) + f∗(y)

Proof.
if y ∈ ∂f(x), then f∗(y) = supu (y>u− f(u)) = y>x− f(x); hence

f∗(v) = sup
u

(v>u− f(u))

≥ v>x− f(x)
= x>(v − y)− f(x) + y>x

= f∗(y) + x>(v − y)

this holds for all v; therefore, x ∈ ∂f∗(y)

reverse implication x ∈ ∂f∗(y) =⇒ y ∈ ∂f(x) follows from f∗∗ = f
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Conjugate of strongly convex function

assume f is closed and strongly convex with parameter µ > 0 for the norm ‖ · ‖
I f∗ is defined for all y (i.e., dom f∗ = Rn)

I f∗ is differentiable everywhere, with gradient

∇f∗(y) = argmax
x

(y>x− f(x))

I ∇f∗ is Lipschitz continuous with constant 1/µ for the dual norm ‖ · ‖∗:

‖∇f∗(y)−∇f∗(y′)‖ ≤ 1

µ
‖y − y′‖∗ for all y and y′
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Proof.
if f is strongly convex and closed

I y>x− f(x) has a unique maximizer x for every y

I x maximizes y>x− f(x) if and only if y ∈ ∂f(x);

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y)

hence ∇f∗(y) = argmax x(y
>x− f(x))

I from first-order condition: if y ∈ ∂f(x), y′ ∈ ∂f(x′):

f(x′) ≥ f(x) + y>(x′ − x) + µ

2
‖x′ − x‖2

f(x) ≥ f(x′) + (y′)>(x− x′) + µ

2
‖x′ − x‖2

combining these inequalities shows

µ‖x− x′‖2 ≤ (y − y′)>(x− x′) ≤ ‖y − y′‖∗‖x− x′‖

I now substitute x = ∇f∗(y) and x′ = ∇f∗(y′)
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Moreau decomposition

x = proxf (x) + proxf∗(x) for all x

I follows from properties of conjugates and subgradients:

u = proxf (x) ⇐⇒ x− u ∈ ∂f(u)
⇐⇒ u ∈ ∂f∗(x− u)
⇐⇒ x− u = proxf∗(x)

I generalizes decomposition by orthogonal projection on subspaces:

x = PL(x) + PL⊥(x)

if L is a subspace, L⊥ its orthogonal complement
(this is the Moreau decomposition with f = δL, f

∗ = δL⊥)
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Extended Moreau decomposition

for λ > 0,
x = proxλf (x) + λproxλ−1f∗(x/λ) for all x

Proof.
apply Moreau decomposition to λf

x = proxλf (x) + prox(λf)∗(x)

= proxλf (x) + λ proxλ−1f∗(x/λ)

second line uses (λf)∗(y) = λf∗(y/λ) and that for f(x) = λg(x/λ),
proxf (x) = λ proxλ−1g(x/λ)
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Duality

primal: minimize f(x) + g(Ax)

dual: maximize −g∗(z)− f∗(−A>z)

I follows from Lagrange duality applied to reformulated primal

minimize f(x) + g(y)

subject to Ax = y

dual function for the formulated problem is:

inf
x,y

(
f(x) + z>Ax+ g(y)− z>y

)
= −f∗(−A>z)− g∗(z)

I Slater’s condition (for convex f, g): strong duality holds if there exists an x̃ with

x̃ ∈ int dom f, Ax̃ ∈ int dom g

this also guarantees that the dual optimum is attained if optimal value is finite
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Set constraint

minimize f(x)

subject to Ax− b ∈ C

Primal and dual problem

primal: minimize f(x) + δC(Ax− b)
dual: maximize −b>z − δ∗C(z)− f∗(−A>z)

Examples

constraint set C support function δ∗C(z)

equality Ax = b {0} 0
norm inequality ‖Ax− b‖ ≤ 1 unit ‖ · ‖-ball ‖z‖∗
conic inequality Ax �K b −K δK∗(z)
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Norm regularization

minimize f(x) + ‖Ax− b‖

I take g(y) = ‖y − b‖ in general problem

minimize f(x) + g(Ax)

I conjugate of ‖ · ‖ is indicator of unit ball for dual norm

g∗(z) = b>z + δB(z) where B = {z | ‖z‖∗ ≤ 1}

I hence, dual problem can be written as

maximize − b>z − f∗(−A>z)
subject to ‖z‖∗ ≤ 1
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Optimality conditions

minimize f(x) + g(y)

subject to Ax = y

assume f, g are convex and Slater’s condition holds

Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: x ∈ dom f and y = Ax ∈ dom g

2. x and y = Ax are minimizers of the Lagrangian f(x) + z>Ax+ g(y)− z>y:

−A>z ∈ ∂f(x), z ∈ ∂g(Ax)

if g is closed, this can be written symmetrically as

−A>z ∈ ∂f(x), Ax ∈ ∂g∗(z)

13 / 14



Any questions?

14 / 14


