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Admin

Assignment 3
» grading still in progress

Assignment 4
» will be posted on PLMS this week
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Proximal point method

an algorithm for minimizing a closed convex function f:
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Tr41 = proxy, r(zx)

= arginin (f(u) + 21k|]u — ka%)
can be viewed as proximal gradient method with g(x) = 0
of interest if prox evaluations are much easier than minimizing f directly
in practice, inexact prox evaluations may be sufficient
step size t; > 0 affects number of iterations, cost of prox evaluations

basis of the augmented Lagrangian method
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Convergence
Assumptions
> fis closed and convex (hence, prox;,(z) is uniqely defined for all )

> optimal value f* is finite and attained at z*

Result 9
l|[zo — x*Hg

221 =0 tl

flag) — f* for k> 1
» implies convergence if >, t; — oo
» rate is 1/k if t; is fixed, or variable but bounded away from zero

» t; is arbitrary; however cost of prox evaluations will depend on ¢;

Proof.
apply analysis of proximal gradient method with g(z) = 0; find the lemma for the
bound on proximal gradient update ]
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Accelerated proximal point algorithms
> we take g(z) = 0 in FISTA:
T = proxtof(mo)

1
Tjy1 = PrOXy, ¢ (mk + Gk(m —1)(x — mk_1)> for k>1

» choose any t; > 0, determine 6 from equation

> converges if Y. \/t; = 00

> rate is 1/k? if t; is fixed or variable but bounded away from zero
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Standard problem format

Primal and dual problem

primal: minimize f(x) + g(Azx)

dual: maximize — g*(z) — f*(—A"2)

Examples

> set constraints (g(y) = dc(y)):

minimize f(x)
subject to Ax € C

» regularized norm approximation (g(y) = ||y — bl|):
minimize f(z) + ||Az — b||

Augmented Lagrangian method: proximal point method applied to the dual
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Proximal mapping of dual function
Definition: proximal mapping of h(z) = g*(2) + f*(—AT 2) is defined as

prox(2) = argin (g°() + (AT + 5 Ju ~ <13
u
Dual expression: prox,,(z) = z + t(A% — y) where

(6.3) = argumin (70 +g0) + (e = 3) + 40~ 313 )

x7y

A~

» Z,4 minimize the augmented Lagrangian (Lagrangian + quadratic penalty)
> f(x) +g(y) + 2" (Az — y) is Lagrangian of primal problem reformulated as

minimize f(z) + g(y)
subject to Az —y =0
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Proof.

> write augmented Lagrangian minimization as

... t
minimize (over z,y,w) f(z)+ g(y) + §||wH§
subject to Ax —y+z/t=w

» optimality conditions (u is the multiplier for the equality constraint):
A:r—y—k%z:w, —ATu € 0f(x), u € 9g(y), tw=u
> eliminating w gives
u=z+t(Azr —vy), —ATu € 0f(x), u € 9g(y)
P eliminating =,y gives

0 € dg*(u) — ADf*(—ATu) + %(u —2)

this is the optimality condition for the problem in the definition of u = prox,,(z) 618



Augmented Lagrangian method

choose initial 2y and repeat:

1. minimize augmented Lagrangian

P . t
(8.3) = argmin (£(2) +06) + 5 142~ v+ 22/l
x7y

2. dual update
21 = 2k + (AT — 9)

also known as method of multipliers
this is the proximal point method applied to the dual problm

as variants, can apply the accelerated proximal point methods to the dual

vvyyypy

usually implemented with inexact minimization step 1
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Examples

minimize f(x) + g(Az)

Equality constraints: g is indicator of {b}

t
& = argmin <f(w) + §HA3: —b+ z/t||%>

z:=z+t(Az =)

Set constraint: g indicator of convex set C'

& = arg min <f(x) + %d(A:r + z/t)2)

2=z +t(AT — Pc(AT + z/t))

» in step 1 on previous page, § = Pc(AZ + z/t) where P« is projection on C

» d(u) = ||u — Pc(u)||2 is Euclidean distance of u to C o)1



Moreau-Yosida smoothing

Definition: the Moreau-Yosida regularization of a closed convex function f is

fote) =inf (F0)+ glu—al3)  (with o> 0)
2

= f(Proth(x)> * 2%” prox; () — tz

this is also known as the Moreau envelope of f

Immediate properties
> f) is convex (infimum over u of a convex function of z, u)

» domain of f(;) is R™ (recall that prox, () is defined for all x)
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Examples

Indicator function: smoothed f is squared Euclidean distance

() = dc(a), fiplw) = 5z

1-norm: smoothed function is Huber penalty

f(@) = ||z, foy(@) = dulax)

k=1

4u(2) = {z J(2t) 2 <t

|z| —t/2 |z| >t
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Conjugate of Moreau envelope

fiolw) = in (f(U) ol xn%)

> fi is infimal convolution of f(u) and [|v]|3/(2t):

fioe) = inf <f(U)+21tHvH§>

utv=x
> conjugate is sum of conjugates of f(u) and |v||3/(2t):

(fo) () = f*(y) + %HyH%

» hence, conjugate is strongly convex with parameter ¢
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Gradient of Moreau envelope

fiofo) =su (7= 1)~ glul3)

Y

> maximizer y in definition is unique and satisfies
x—ty€of(y) < yeaif(z—ty)
1
— y= ;(m — proxtf(x))

> maximizer y is the gradient of f:

1
Vf(t) (z) = {(m - pl"Oth(iU)) = PTOXy—1 px(g/t)

we applied the Moreau decomposition
> gradient V fy is Lipschitz continuous with constant 1/¢
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

minimize  fq(z) = inf (f(u) + %Hu — x||§>

this is an exact smooth reformulation of problem of minimizing f(x):
> solution z is minimizer of f
> f() is differentiable with Lipschitz continuous gradient (L = 1/t)

Gradient update: with fixed t, = 1/L =t

Try1 = T — UV f(3) (Tg) = proxs(zx)

... the proximal point update with constant step size t;, =t
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Interpretation of augmented Lagrangian algorithm

minimize f(z) + g(Ax)

P> augmented Lagrangian iteration is

(6,9) = argmin () +900) + 4o~ + (/013 )

2z =z+t(AT —9)

» with fixed ¢, dual update is gradient step applied to a smoothed dual
> after eliminating y, primal step can be written as

# = arg min ( F(@) + g (A + (1/t)z)>

> second term gy /) (Ax + (1/t)z) is a smooth approximation of g(Ax)
» adding the offset z /¢ allows us to use a fixed ¢
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Example

minimize f(z) + ||Az — b1

P> augmented Lagrangian iteration is

P . t
(8.3) = argain () + Iy vl + e -y + (1/0)213)
x7y
z=z+t(AT —y)
P primal step after eliminating y: % is the solution of

minimize  f(x) + ¢/ (Az — b+ (1/t)2)

with ¢1/; the Huber penalty applied componentwise

17/18



Any questions?

18/18



