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Admin
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I grading still in progress
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I will be posted on PLMS this week
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Proximal point method

an algorithm for minimizing a closed convex function f :

xk+1 = proxtkf (xk)

= argmin
u

(
f(u) +

1

2tk
‖u− xk‖22

)
I can be viewed as proximal gradient method with g(x) = 0

I of interest if prox evaluations are much easier than minimizing f directly

I in practice, inexact prox evaluations may be sufficient

I step size tk > 0 affects number of iterations, cost of prox evaluations

I basis of the augmented Lagrangian method
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Convergence
Assumptions

I f is closed and convex (hence, proxtf (x) is uniqely defined for all x)

I optimal value f? is finite and attained at x?

Result

f(xk)− f? ≤
‖x0 − x?‖22
2
∑k−1

i=0 ti
for k ≥ 1

I implies convergence if
∑

i ti →∞
I rate is 1/k if ti is fixed, or variable but bounded away from zero

I ti is arbitrary; however cost of prox evaluations will depend on ti

Proof.
apply analysis of proximal gradient method with g(x) = 0; find the lemma for the
bound on proximal gradient update
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Accelerated proximal point algorithms

I we take g(x) = 0 in FISTA:

x1 = proxt0f (x0)

xk+1 = proxtkf

(
xk + θk(

1

θk−1
− 1)(xk − xk−1)

)
for k ≥ 1

I choose any tk > 0, determine θk from equation

θ2k
tk

= (1− θk)
θ2k−1
tk−1

I converges if
∑

i

√
ti →∞

I rate is 1/k2 if ti is fixed or variable but bounded away from zero
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Standard problem format
Primal and dual problem

primal: minimize f(x) + g(Ax)

dual: maximize − g∗(z)− f∗(−A>z)

Examples

I set constraints (g(y) = δC(y)):

minimize f(x)

subject to Ax ∈ C

I regularized norm approximation (g(y) = ‖y − b‖):

minimize f(x) + ‖Ax− b‖

Augmented Lagrangian method: proximal point method applied to the dual
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Proximal mapping of dual function
Definition: proximal mapping of h(z) = g∗(z) + f∗(−A>z) is defined as

proxth(z) = argmin
u

(
g∗(u) + f∗(−A>u) + 1

2t
‖u− z‖22

)
Dual expression: proxth(z) = z + t(Ax̂− ŷ) where

(x̂, ŷ) = argmin
x,y

(
f(x) + g(y) + z>(Ax− y) + t

2
‖Ax− y‖22

)

I x̂, ŷ minimize the augmented Lagrangian (Lagrangian + quadratic penalty)

I f(x) + g(y) + z>(Ax− y) is Lagrangian of primal problem reformulated as

minimize f(x) + g(y)

subject to Ax− y = 0
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Proof.
I write augmented Lagrangian minimization as

minimize (over x, y, w) f(x) + g(y) +
t

2
‖w‖22

subject to Ax− y + z/t = w

I optimality conditions (u is the multiplier for the equality constraint):

Ax− y + 1

t
z = w, −A>u ∈ ∂f(x), u ∈ ∂g(y), tw = u

I eliminating w gives

u = z + t(Ax− y), −A>u ∈ ∂f(x), u ∈ ∂g(y)

I eliminating x, y gives

0 ∈ ∂g∗(u)−A∂f∗(−A>u) + 1

t
(u− z)

this is the optimality condition for the problem in the definition of u = proxth(z) 8 / 18



Augmented Lagrangian method

choose initial z0 and repeat:

1. minimize augmented Lagrangian

(x̂, ŷ) = argmin
x,y

(
f(x) + g(y) +

tk
2
‖Ax− y + zk/tk‖22

)
2. dual update

zk+1 = zk + tk(Ax̂− ŷ)

I also known as method of multipliers

I this is the proximal point method applied to the dual problm

I as variants, can apply the accelerated proximal point methods to the dual

I usually implemented with inexact minimization step 1

9 / 18



Examples

minimize f(x) + g(Ax)

Equality constraints: g is indicator of {b}

x̂ = argmin
x

(
f(x) +

t

2
‖Ax− b+ z/t‖22

)
z := z + t(Ax̂− b)

Set constraint: g indicator of convex set C

x̂ = argmin
x

(
f(x) +

t

2
d(Ax+ z/t)2

)
z := z + t(Ax̂− PC(Ax̂+ z/t))

I in step 1 on previous page, ŷ = PC(Ax̂+ z/t) where PC is projection on C
I d(u) = ‖u− PC(u)‖2 is Euclidean distance of u to C
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Moreau-Yosida smoothing

Definition: the Moreau-Yosida regularization of a closed convex function f is

f(t)(x) = inf
u

(
f(u) +

1

2t
‖u− x‖22

)
(with t > 0)

= f
(
proxtf (x)

)
+

1

2t

∥∥∥proxtf (x)− x∥∥∥2
2

this is also known as the Moreau envelope of f

Immediate properties

I f(t) is convex (infimum over u of a convex function of x, u)

I domain of f(t) is Rn (recall that proxtf (x) is defined for all x)
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Examples

Indicator function: smoothed f is squared Euclidean distance

f(x) = δC(x), f(t)(x) =
1

2t
d(x)2

1-norm: smoothed function is Huber penalty

f(x) = ‖x‖1, f(t)(x) =

n∑
k=1

φt(xk)

φt(z) =

{
z2/(2t) |z| ≤ t
|z| − t/2 |z| ≥ t
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Conjugate of Moreau envelope

f(t)(x) = inf
u

(
f(u) +

1

2t
‖u− x‖22

)

I f(t) is infimal convolution of f(u) and ‖v‖22/(2t):

f(t)(x) = inf
u+v=x

(
f(u) +

1

2t
‖v‖22

)

I conjugate is sum of conjugates of f(u) and ‖v‖22/(2t):(
f(t)
)∗
(y) = f∗(y) +

t

2
‖y‖22

I hence, conjugate is strongly convex with parameter t
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Gradient of Moreau envelope

f(t)(x) = sup
y

(
x>y − f∗(y)− t

2
‖y‖22

)

I maximizer y in definition is unique and satisfies

x− ty ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x− ty)

⇐⇒ y =
1

t
(x− proxtf (x))

I maximizer y is the gradient of f(t):

∇f(t)(x) =
1

t
(x− proxtf (x)) = proxt−1f∗(x/t)

we applied the Moreau decomposition

I gradient ∇f(t) is Lipschitz continuous with constant 1/t
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

minimize f(t)(x) = inf
u

(
f(u) +

1

2t
‖u− x‖22

)

this is an exact smooth reformulation of problem of minimizing f(x):

I solution x is minimizer of f

I f(t) is differentiable with Lipschitz continuous gradient (L = 1/t)

Gradient update: with fixed tk = 1/L = t

xk+1 = xk − t∇f(t)(xk) = proxtf (xk)

. . . the proximal point update with constant step size tk = t
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Interpretation of augmented Lagrangian algorithm

minimize f(x) + g(Ax)

I augmented Lagrangian iteration is

(x̂, ŷ) = argmin
x,y

(
f(x) + g(y) +

t

2
‖Ax− y + (1/t)z‖22

)
z := z + t(Ax̂− ŷ)

I with fixed t, dual update is gradient step applied to a smoothed dual

I after eliminating y, primal step can be written as

x̂ = argmin
x

(
f(x) + g(1/t)(Ax+ (1/t)z)

)
I second term g(1/t)(Ax+ (1/t)z) is a smooth approximation of g(Ax)

I adding the offset z/t allows us to use a fixed t
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Example

minimize f(x) + ‖Ax− b‖1

I augmented Lagrangian iteration is

(x̂, ŷ) = argmin
x,y

(
f(x) + ‖y − b‖1 +

t

2
‖Ax− y + (1/t)z‖22

)
z := z + t(Ax̂− ŷ)

I primal step after eliminating y: x̂ is the solution of

minimize f(x) + φ1/t(Ax− b+ (1/t)z)

with φ1/t the Huber penalty applied componentwise
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Any questions?
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