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Motivation

Consider unconstrained smooth convex optimization

min
x
f(x)

Gradient descent: starts from an initial point and repeats

xt+1 = xt − ηt∇f(xt)

I achieves linear convergence rate under strong convexity O(κ log 1/ε)

Newton’s method: starts from an initial point and repeats

xt+1 = xt −
(
∇2f(xt)

)−1∇f(xt)

I achieves quadratic convergence rate under strong convexity O(log log(1/ε))
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Newton step

For x ∈ dom f , the vector

∆xnt = −
(
∇2f(x)

)−1∇f(x)

is called the Newton step (for f , at x).

Positive definiteness of ∇2f(x) implies that

∇f(x)>∆xnt = −∇f(x)>
(
∇2f(x)

)−1∇f(x) < 0

unless ∇f(x) = 0, so the Newton step is a descent direction (unless x is optimal).
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Minimizer of second-order approximation

The second-order Taylor approximation (or model) f̂ of f at x is

f̂(x+ v) ≈ f(x) +∇f(x)>v +
1

2
v>∇2f(x)v

I a convex quadratic function of v and minimized when v = ∆xnt; the Newton step
∆xnt is what should be added to the point x to minimize the second-order
approximation of f at x.

I If f is quadratic, then x+ ∆xnt is the exact minimizer of f .

I If f is nearly quadratic, x+ ∆xnt should be a very good estimate of the minimizer
of f , i.e., x?.
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Figure: the function f (solid) and its second-order approximation f̂ at x (dashed); x+ ∆xnt is
the minimizer of x̂; figure from BV
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Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x?) = 0 near x we obtain

∇f(x+ v) ≈ ∇f(x) +∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again, this
suggests that when x is near x? (so the optimality conditions almost hold), the update
x+ ∆xnt should be a very good approximation of x?.
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Figure: Illustration of the Newton step in the case of n = 1, i.e., f : R→ R; figure from BV

Given our current approximation x of the solution, we form a first-order Taylor
approximation of f ′ at x. The solution x? of the minimization problem is characterized
by f ′(x?) = 0, i.e., it is the zero-crossing of the derivative f ′, which is monotonically
increasing since f is convex. The zero-crossing of this affine approximation is then
x+ ∆xnt.
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Affine invariance of the Newton step
Suppose T ∈ Rn×n is nonsingular, define f̄(y) = f(Ty), and let x = Ty. Then we have

∇f̄(y) = T>∇f(x), ∇2f̄(y) = T>∇2f(x)T

The Newton step for f̄ at y is therefore

∆ynt = −
(
T>∇2f(x)T

)−1(
T>∇f(x)

)
= −T−1

(
∇2f(x)

)−1∇f(x)

= T−1∆xnt

where ∆xnt is the Newton step for f at x. Hence the Newton steps of f and f̄ are
related by the same linear transformation, and

x+ ∆xnt = T (y + ∆ynt).

I The Newton step is is independent of linear (or affine) changes of coordinates.
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Newton decrement

The Newton decrement at x is defined as

λ(x) =
(
∇f(x)>

(
∇2f(x)

)−1∇f(x)
)1/2

I relates to the difference between f(x) and the minimum of its quadratic
approximation

f(x)− inf
y
f̂(y) = f(x)− f̂(x+ δxnt) =

1

2
λ(x)2

i.e., can think of λ2(x)/2 as an estimate of the suboptimality gap f(x)− f?
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I We can also express the Newton decrement as

λ(x) =
(
∆x>nt∇2f(x)∆xnt

)1/2
which shows that λ is the length of the Newton step, in the quadratic norm
defined by the Hessian, i.e., the norm

‖u‖∇2f(x) =
(
u>∇2f(x)u

)1/2
I like the Newton step, the Newton decrement is affine invariant; i.e., the Newton

decrement of f̄(y) = f(Ty) at y, where T is nonsingular, is the same as the
Newton decrement of f at x = Ty.
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Newton’s method

Newton’s method

given a starting point x ∈ dom f , tolerance ε > 0

repeat

1. Compute the Newton step and decrement.

∆xnt := −
(
∇2f(x)

)−1∇f(x); λ2 := ∇f(x)>
(
∇2f(x)

)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.

4. Update. x := x+ t∆xnt.

12 / 22



Phase 1: damped (or guarded) Newton method

x(k+1) = x(k) − t
(
∇2f(x(k))

)−1∇f(x(k))

I when x is not close to x? apply step size t using backtracking line search

Phase 2: undamped (or pure) Newton method

x(k+1) = x(k) −
(
∇2f(x(k))

)−1∇f(x(k))

I when x is close enough to x? apply unit step size t = 1

I this is where we achieve quadratic convergence
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Backtracking line search

choose the step length to (approximately) minimize f along the ray {x+ t∆x | t ≥ 0}

Backtracking line search

given a descent direction ∆x for f at x ∈ dom f , α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.
while f(x+ t∆x) > f(x) + αt∇f(x)>∆x, t := βt.
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Convergence analysis
Assume

I f is twice continuously differentiable

I f is strongly convex with constant m, i.e., ∇2f(x) � mI
I ∇f is Lipschitz continuous with parameter M i.e., ∇2f(x) �MI

Also assume the Hessian of f is Lipschitz continuous with constant L, i.e.,

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2 for all x, y

I L can be interpreted as a bound on the third derivative of f ; zero for a quadratic
function

I L measures how well f can be approximated by a quadratic model; we can expect
L to play a critical role in the performance of Newton’s method

I Newton’s method will work well for a function whose quadratic model varies
slowly (i.e., small L)
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Theorem
Newton’s method with backtracking line search satisfies the following two-stage
convergence bounds

f(x(k))− f? ≤


(f(x(0))− f?)− γk k ≤ k0
2m3

L2

(
1

2

)2k−k0+1

k > k0

where γ = αβ2η2m/M2, η = min{1, 3(1− 2α)}m2

L , and k0 is the number of steps

until ‖∇f(x(k0+1))‖ < η
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Idea and outline of convergence proof
Convergence analysis reveals that there are η and γ with 0 < η ≤ m2/L and γ > 0
such that the following hold

1. (damped Newton phase) if ‖∇f(x(k))‖2 ≥ η, then

f(x(k+1))− f(x(k)) ≤ −γ
2. (pure Newton phase) if ‖∇f(x(k))‖2 < η, then the backtracking line search

selects t(k) = 1 and

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m
‖∇f(x(k))‖2

)2

I by recursively applying the second inquality for l ≥ k we can obtain

L

2m2
‖∇f(x(l))‖2 ≤

(
L

2m
‖∇f(x(k))‖2

)2l−k

≤
(

1

2

)2l−k

and hence

f(x(l))− f? ≤ 1

2m
‖∇f(x(l))‖22 ≤

2m3

L2

(
1

2

)2l−k+1
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proof sketchy (see BV for full proof)

1. derive an upper bound on the number of iterations in the dampted Newton phase:
f decreases by at least γ (= αβη2m/M2) at each iteration, the number of
dampted Newton steps cannot exceed

f(x(0))− f?

γ

2. bound the number of iterations in the quadratically convergent phase: the
subobtimality gap implies that we must have f(x)− f? ≤ ε after no more than

log2 log2(ε0/ε)

iterations in the quadratically convergent phase, where ε0 = 2m3/L2

I compare this to linear convergence of gradient descent (under strong convexity)
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overall, then, the number of iterations until f(x)− f? ≤ ε is bounded above by

f(x(0))− f?

γ
+ log2 log2(ε0/ε)

I log2 log2(ε0/ε) grows extremely slowly with required accuracy ε, and can be
considered a constant for practical purposes, say five or six (Six iterations of the
quadratically convergent stage gives an accuracy of about ε ≈ 5 · 10−20ε0)
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Comparison to first-order methods

At a high-level:

I Memory: each iteration of Newton’s method requires O(n2) storage (n× n
Hessian); each gradient iteration requires O(n) storage (n-dimensional gradient)

I Computation: each Newton iteartion requires O(n3) flops (solving a dense n× n
linear system); each gradient iteration requires O(n) flops (scaling/adding
n-dimensional vectors)

I Backtracking: backtracking line search has roughly the same cost, both use O(n)
flops per inner backtracking step

I Conditioning: Newton’s method is not affected by a problem’s conditioning, but
gradient descent can seriously degrade
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Summary

Newton’s method has several advantages over gradient methods:

I Convergence of Newton’s method is rapid in general, and quadratic near x?.

I Newton’s method is affine invariant.

I Newton’s method scales well with problem size.

I The good performance of Newton’s method is not dependent on the choice of
algorithm parameters.

The main disadvantage of Newton’s method is the cost of forming and storing the
Hessian, and the cost of computing the Newton step, which requires solving a set of
linear equations.
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Any questions?

22 / 22


