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Newton method

minimize f(x)

f convex, twice continuously differentiable

Newton method
xk+1 = xk − tk∇2f(xk)−1∇f(xk)

I advantages: fast convergence, robustness, affine invariance

I disadvantages: requires second derivatives and solution of linear equation

can be too expensive for large scale applications
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Variable metric methods

xk+1 = xk − tkH
−1
k ∇f(xk)

the positive definite matrix Hk is an approximation of the Hessian at xk, chosen to:

I avoid calculation of second derivatives

I simplify computation of search direction

“Variable metric” interpretation

∆x = −H−1∇f(x)

is the steepest descent direction at x for the quadratic norm

‖z‖H =
(
z>Hz

)1/2
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Quasi-Newton methods

given: starting point x0 ∈ dom f , H0 � 0

for k = 0, 1, . . .

1. compute quasi-Newton direction ∆xk = −H−1k ∇f(xk)

2. determine step size tk (e.g., by backtracking line search)

3. compute xk+1 = xk + tk∆xk

4. compute Hk+1

I different update rules exist for Hk+1 in step 4

I can also propagate H−1k or a factorization of Hk to simplify calculation of ∆xk
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

BFGS update

Hk+1 = Hk +
yy>

y>s
− Hkss

>Hk

s>Hks

where
s = xk+1 − xk, y = ∇f(xk+1)−∇f(xk)

Inverse update

H−1k+1 =

(
I − sy>

y>s

)
H−1k

(
I − ys>

y>s

)
+

ss>

y>s

I note that y>s > 0 for strictly convex f

I cost of update or inverse update is O(n2) operations
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Positive definiteness

I if y>s > 0, BFGS update preserves positive definiteness of Hk

I this ensures that ∆x = −H−1k ∇f(xk) is a descent direction

Proof: from inverse update formula,

v>H−1k+1v =

(
v − s>v

s>y
y

)>
H−1k

(
v − s>v

s>y
y

)
+

(s>v)2

y>s

I if Hk � 0, both terms are nonnegative for all v

I second term is zero only if s>v = 0; then first term is zero only if v = 0
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Secant condition
the BFGS update satisfies the secant condition

Hk+1s = y

where s = xk+1 − xk and y = ∇f(xk+1)−∇f(xk)

Interpretation: we define a quadratic approximation of f around xk+1

f̃(x) = f(xk+1) +∇f(xk+1)
>(x− xk+1) +

1

2
(x− xk+1)

>Hk+1(x− xk+1)

I by construction ∇f̃(xk+1) = ∇f(xk+1)

I secant condition implies that also ∇f̃(xk) = ∇f(xk):

∇f̃(xk) = ∇f(xk+1) + Hk+1(xk − xk+1)

= ∇f(xk)
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Secant method
for f : R→ R, BFGS with unit step size gives the secant method

xk+1 = xk −
f ′(xk)

Hk
, Hk =

f ′(xk)− f ′(xk−1)

xk − xk−1
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On secant condition

The secant condition admits infinite number of solutions; i.e., n(n + 1)/2 degree of
freedom with n equations. To determine Hk+1 uniquely, we impose additional
condition that is Hk+1 and Hk are close to each other:

minimize ‖H −Hk‖
subject to H = H>, Hs = y

I different matrix norms can be used, and each norm gives rise to a different
quasi–Newton method
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BFGS update in detail
BFGS takes a rank-two update

Hk+1 = Hk + auu> + bvv>

the secant equation Hk+1s = y yields

Hk+1s = Hks + auu>s + bvv>s = y

with u = y and v = Hks we have

Hks + ayy>s + bHkss
>H>k s = y

to solve for a and b
y(1− ay>s) = Hks(1 + bs>H>k s)

which yields a = 1
y>s

and b = − 1
s>Hks

, and plugging this in gives the BFGS update

applying the Sherman-Morrison-Woodbury formula further gives the inverse update
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Symmetric rank-one (SR1) update

An update of the form:
Hk+1 = Hk + auu>

The secant equation Hk+1s = y yields

(au>s)u = y −Hks

This holds if u is a multiple of y −Hks. Thus, with u = y −Hks, we have
a = 1/(y −Hks)

>s, which leads to

Hk+1 = Hk +
(y −Hks)(y −Hks)

>

(y −Hks)>s

I SR1 is simple but does not preserve positive definiteness
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Convergence

Global result

if f is strongly convex, BFGS with backtracking line search converges from any x0,
H0 � 0

Local convergence

if f is strongly convex and ∇2f(x) is Lipschitz continuous, local convergence is
superlinear: for sufficiently large k,

‖xk+1 − x?‖2 ≤ ck‖xk − x?‖2

where ck → 0
(quadratic local convergence of Newton method)
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Example

minimize c>x−
m∑
i=1

log(bi − a>i x)

n = 100, m = 500

I cost per Newton iteration: O(n3) plus computing ∇2f(x)

I cost per BFGS iteration: O(n2)
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Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store Hk or H−1k

Limited-memory BFGS (L-BFGS): do not store H−1k explicitly

I instead we store up to m (e.g., m = 30) values of

sj = xj+1 − xj , yj = ∇f(xj+1)−∇f(xj)

I we evaluate ∆xk = H−1k ∇f(xk) recursively, using

H−1j+1 =

(
I −

sjy
>
j

y>j sj

)
H−1j

(
I −

yjs
>
j

y>j sj

)
+

sjs
>
j

y>j s

for j = k − 1, . . . , k −m, assuming, for example, Hk−m = I

I an alternative is to restart after m iterations

I cost per iteration is O(nm), storage is O(nm)
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Further reading

I Numerical Optimization by J. Nocedal and S. J. Wright

15 / 16



Any questions?
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