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Newton method

minimize f(x)

f convex, twice continuously differentiable

Newton method
Tpp1 = o — V2 f(25) "V f (k)

> advantages: fast convergence, robustness, affine invariance

> disadvantages: requires second derivatives and solution of linear equation

can be too expensive for large scale applications
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Variable metric methods

-1
Ty = xp — G H "V f(2g)
the positive definite matrix Hj, is an approximation of the Hessian at x;, chosen to:
» avoid calculation of second derivatives

» simplify computation of search direction

“Variable metric” interpretation
Az = —H 'V f(z)
is the steepest descent direction at x for the quadratic norm

Izl = (=T Hz)"?
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Quasi-Newton methods

given: starting point xg € dom f, Hy > 0

for k=0,1,...
1. compute quasi-Newton direction Az, = —Hk_IVf(l‘k)
2. determine step size t; (e.g., by backtracking line search)
3. compute Ty = T + tpAxy
4. compute Hy 1

> different update rules exist for Hy1 in step 4
» can also propagate Hk_1 or a factorization of Hj, to simplify calculation of Axy
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

BFGS update
yy'  Hpss' Hy
y's sTHys

Hjp 1= Hp +

where
§=Tpp1 — T, Y= Vf(xrs1)— V(zg)

Inverse update

T T T
-1 sy _1 ys ss
k= (1= ) (1- ) + 4

> note that y's > 0 for strictly convex f

> cost of update or inverse update is O(n?) operations
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Positive definiteness

» if y's > 0, BFGS update preserves positive definiteness of Hj,
> this ensures that Az = —H, 'V f(z,) is a descent direction

Proof: from inverse update formula,

T T T T,)2
T s'v 1 s'v (s'v)
Hlo=(v-2y) B 0v-21
o <U sTyy> : (U sTyy> Ty

» if H; > 0, both terms are nonnegative for all v

» second term is zero only if s'v = 0; then first term is zero only if v = 0
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Secant condition
the BFGS update satisfies the secant condition

Hyi1s =y
where s = 211 — ap and y = Vf(zp11) — V(ag)

Interpretation: we define a quadratic approximation of f around zj11

f(@) = flerer) + VI (@r) T (@ — 2p1) + %(l’ — k1) Hyp1 (2 — 2pp1)

> by construction V f(zj11) = Vf(2rs1)
> secant condition implies that also V f(z}) = V f(z4):

Vi(rk) = Vf(wpe) + Hepr(zr — T11)
= V/[f(x)
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Secant method
for f : R — R, BFGS with unit step size gives the secant method

f(xr) f'(@r) = f1(@r-1)

Tl = T — ———, Hp =
* Hy Tp — Th—1

et X X /

)

1'(x)
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On secant condition

The secant condition admits infinite number of solutions; i.e., n(n + 1)/2 degree of
freedom with n equations. To determine Hy 1 uniquely, we impose additional
condition that is Hy41 and Hj, are close to each other:

minimize ||H — Hg||
subject to H=H', Hs=y

> different matrix norms can be used, and each norm gives rise to a different
quasi—Newton method
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BFGS update in detail
BFGS takes a rank-two update

Hyy1 = Hi + auu' 4 bov"
the secant equation Hy,1s = y yields
Hyi1s = Hps +auu's+bov' s =y
with u =y and v = Hys we have
His+ayy' s+ kassTH,;rs =y

to solve for @ and b
y(1 —ay's) = Hps(1+bs' Hy s)

1
sT Hys

which yields a = ﬁ and b = , and plugging this in gives the BFGS update

applying the Sherman-Morrison-Woodbury formula further gives the inverse update
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Symmetric rank-one (SR1) update

An update of the form:
Hypy = Hi + auu "

The secant equation Hy1s = y yields
(au' s)u =y — Hys

This holds if u is a multiple of y — Hys. Thus, with u = y — Hys, we have
a=1/(y — Hys) s, which leads to

(y — Hys)(y — Hgs) "

H = H
k41 k+ (y— Hys)Ts

» SR1 is simple but does not preserve positive definiteness
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Convergence

Global result

if f is strongly convex, BFGS with backtracking line search converges from any xg,
Hy =0

Local convergence

if f is strongly convex and V2f(x) is Lipschitz continuous, local convergence is
superlinear: for sufficiently large k,

|2kt — 2%l2 < cpllzr — 27|l
where ¢, — 0

(quadratic local convergence of Newton method)
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Example

m
minimize ¢’z — g log(b; — a; x)

i=1
n = 100, m = 500
Newton BFGS
103 1 103 1
100 10°
o S
;1073 ;1073
E 10 = 10
~ ~
1070 10°°
—12 —12 |
10 6 8 10 12 1077, 50 100 150
k k

» cost per Newton iteration: O(n?) plus computing V2f(x)
» cost per BFGS iteration: O(n?)



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store Hj, or H,;l

Limited-memory BFGS (L-BFGS): do not store H,;l explicitly

> instead we store up to m (e.g., m = 30) values of
§j = Tj1 = 25, Yj = VI(zie1) = V()
> we evaluate Axy = H,JIVf(xk) recursively, using

T T T

_ 551 B YjS; 5;8;
e (1 Y (20 2
Y, Sj Yj S y; s

forj=k—1,...,k —m, assuming, for example, Hy_,, = [
» an alternative is to restart after m iterations

> cost per iteration is O(nm), storage is O(nm)
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Further reading

» Numerical Optimization by J. Nocedal and S. J. Wright

15/16



Any questions?
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