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Deterministic oracle model

So far we assume that we have access to the gradient ∇f(x). For example,

(GD) xt+1 = xt − η∇f(xt)

for which we call “oracle” for the true gradient at a point x to perform GD.

In practice, we may not have access to the true gradient.

I Gradient obtained is noisy or inexact.

I Gradient is too expensive to compute.
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Stochastic oracle model

In stochastic setting, we assume that the gradient that oracle returns is not exact but
only the expected value of it is.

A stochastic oracle for a differentiable function f takes as input a vector x ∈ Rd and
outputs a random vector g ∈ Rd such that

E[g] = ∇f(x)

where the expectation is taken with respect to the randomization of the oracle.

We say that the oracle is an unbiased estimator of the true gradient.
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Coordinate optimization
Coordinate descent: only updates one variable at a time

Figure: coordinate optimization; figure from Schmidt lecture note

I no better than GD either convergence or computation wise

Randomized coordinate descent: at iteration t randomly sample a coordinate it and
perform

xt+1 = xt − η∇itf(xt)

I can be faster than gradient descent if iterations are d times cheaper.
I can be applied to separable functions in general (e.g., f(x) = ‖x‖22) 4 / 19



Analyzing coordinate optimization

We assume that each ∇jf is L-Lipschitz (“coordinate wise Lipschitz”)

|∇jf(x+ γej)−∇jf(x)| ≤ L|γ|

which for twice differentiable functions is equivalent to |∇2
jjf(x)| ≤ L for all j

I if gradient is L-Lipschitz then it’s also coordinate wise L-Lipschitz

coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma

f(xt+1) ≤ f(xt) +∇jf(xt)(xt+1 − xt)j +
L

2
(xt+1 − xt)2j

GD with step size η = 1/L gives a progress bound for updating coordinate jt

f(xt+1) ≤ f(xt)−
1

2L
|∇jtf(xt)|2
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expected progress with random selection of jt

E[f(xt+1)] ≤ E
[
f(xt)−

1

2L
|∇jtf(xt)|2

]
≤ E

[
f(xt)

]
− 1

2L
E
[
|∇jtf(xt)|2

]
≤ f(xt)−

1

2L

d∑
j=1

p(jt = j)|∇jf(xt)|2

choose jt uniformly at random, i.e., p(jt = j) = 1/d

E[f(xt+1)] ≤ f(xt)−
1

2dL
‖∇f(xt)‖2
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Under µ-strong convexity we get

E
[
f(xt)

]
− f? ≤

(
1− µ

dL

)t(
f(x0)− f?

)
which means we have the iteration complexity O(dLµ log(1/ε))

So compared to GD under strong convexity, coordinate descent requires d-times many
iterations?

I if coordinate descent steps are d-times cheaper than both algorithm require
O((L/µ) log(1/ε))

I but Lipschitz constant L are different: i.e., Lf vs Lc and Lc ≤ Lf
I extends to Lipschitz sampling, block-coordinate descent, etc.
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Finite sum optimization

Consider minizing finite sum

f(x) =
1

n

n∑
i=1

fi(x)

where f(x) is given as the sum of many terms

many machine learning problems fall into this category, for example, consider the least
squares objective

f(x) =
1

n
‖Ax− b‖22 =

1

n

n∑
i=1

(a>i x− bi)2

empirical risk minimization is in general finite-sum minimization
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Empirical risk minimization

In machine learning, we wish to minimize the expected risk

min
x

Eξ
[
f(x; ξ)

]
but typically the distribution over ξ is unknown.

So instead we minimize the empirical risk

min
x
f(x) =

1

n

n∑
i

fi(x)

hoping that observation (n training data points) may represent the distribution.
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Motivation: Big-N problems

for fitting a least squares model

I Gradient methods are effective when d is very large: i.e., O(nd) per iteration
instead of O(nd2 + d3) to solve as linear system

But what if number of training exampels n is very large?

I All Gmails, all products on Amazon, all homepages, all images, etc.
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Deterministic vs Stochastic methods

Given a finite sum f(x) = 1
n

∑n
i=1 fi(x),

Deterministic gradient method:

xt+1 = xt − η∇f(xt) = xt − η∇

(
1

n

n∑
i=1

fi(xt)

)
= xt −

η

n

n∑
i=1

∇fi(xt)

I The cost of each update step is proportional to n; if n is large (a lot of data),
performing GD can be very expensive.

I We know that this method converges with a fixed step size η.
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Deterministic vs Stochastic methods

Given a finite sum f(x) = 1
n

∑n
i=1 fi(x),

Stochastic gradient method:

xt+1 = xt − η∇fit(xt)

where it = {1, 2, ..., n} is selected uniformly at random.

I The cost of each update is independent of n.

I The stochastic gradient is indeed an unbiased estimate of the full gradient; i.e.,
with p(it = i) = 1/n

E
[
∇fit(x)

]
=

n∑
i=1

p(it = i)∇fi(x) =
n∑
i=1

1

n
∇fi(x) =

1

n

n∑
i=1

∇fi(x) = ∇f(x)

I This method requires a decreasing step size η → 0 to converge.
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Deterministic vs Stochastic methods

(a) GD (b) SGD

Figure: Illustrating deterministic vs stochastic methods; figure from Schmidt lecture note
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Deterministic vs Stochastic methods

Illustrating determinstic vs stochastic methods (least squares)
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Deterministic vs Stochastic methods

Comparing determinstic vs stochastic methods in convergence rate

For non-smooth case, the convergence rates are the same.

I O(1/
√
t) for convex

I O(1/t) for strongly convex (not proved in the class)

I Same rate as deterministic method, but n times faster.

For smooth case, stochastic method is slower.

I O(1/
√
t) for convex (whereas for deterministic O(1/t))

I O(1/t) for strongly convex (whereas for deterministic O(ρt))
I Even momentum methods do not improve this rate in stochastic setting.
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Convergence for convex case
we can write

‖xt+1 − x?‖22 = ‖xt − ηgt − x?‖22
= ‖xt − x?‖22 − 2η

〈
gt, xt − x?

〉
+ η2‖gt‖22

take conditional expectation at iteration t

E
[
‖xt+1 − x?‖22 | xt

]
= ‖xt − x?‖22 − 2η

〈
E[gt | xt], xt − x?

〉
+ η2E

[
‖gt‖22 | xt

]
≤ ‖xt − x?‖22 − 2η

(
f(xt)− f(x?)

)
+ η2E

[
‖gt‖22 | xt

]
take total expectation

E
[
‖xt+1 − x?‖22

]
≤ E

[
‖xt − x?‖22

]
− 2η

(
E[f(xt)]− f(x?)

)
+ η2E

[
‖gt‖22

]
assuming bounded gradient, i.e., E

[
‖gt‖22

]
≤ σ2 and re-arranging terms yields

E
[
f(

1

T

T∑
i=1

xt)

]
− f? ≤ R2

2ηT
+
ησ2

2
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Convergence for smooth non-convex case
progress bound

f(xt+1) ≤ f(xt)− ηt∇f(xt)>∇fit(xt) + η2t
L

2
‖∇fit(xt)‖22

take the expectation and assume ηt does not depend on it

E
[
f(xt+1)

]
≤ E

[
f(xt)− ηt∇f(xt)>∇fit(xt) + η2t

L

2
‖∇fit(xt)‖22

]
≤ f(xt)− ηt∇f(xt)>E

[
∇fit(xt)

]
+ η2t

L

2
E
[
‖∇fit(xt)‖22

]
under uniform sampling (unbiased gradient estimate) it gives

E
[
f(xt+1)

]
≤ f(xt)− ηt‖∇f(xt)‖22 + η2t

L

2
E
[
‖∇fit(xt)‖22

]
I negative second term: always helps to decrease the objective, and the bigger

gradient the more decrease
I positive third term: second moment (or variance) needs to be small
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assume bounded variance: for all x

E
[
‖∇fi(x)‖22

]
≤ σ2

then the progress bound becomes

E
[
f(xt+1)

]
≤ f(xt)− ηt‖∇f(xt)‖22 + η2t

Lσ2

2

re-arranging the terms and summing for T iterations will give

min
t=1,...,T

E
[
‖∇f(xt)‖22

]
≤ f(x1)− f?∑T

t=1 ηt
+
Lσ2

2

∑T
t=1 η

2
t∑T

t=1 ηt
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Any questions?
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