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Problem Setup

Many machine learning problem involves optimizing the following problem

min g(z) := iZfz(x)

r€eRP

where each f; is smooth and convex. Often we deal with cases where g is strongly
convex.

For optimization, gradient descent (GD, full gradient) method iterates by

Stochastic gradient descent (SGD) method iterates by
$Ic—f—l — $k _ akvfzk (.Z‘k)

where iy, is sampled uniformly from {1,...,n}.
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GD vs SGD

For GD, suboptimality bound at iteration k, using constant a, is given as
9(z*) = g(a*) = O(1/k)
if each f; is smooth and convex.
g(@*) —g(a*) = O(p"),p < 1
if in addition, g is strongly convex.
For SGD, suboptimality bound at iteration k&, using decreasing «y, is given as
E[g(a")] - g(2*) = O(1/Vk)
if each f; is smooth and convex.
Elg(a")] - g(z*) = O(1/k)

if in addition, g is strongly convex.
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SAG

Want to have an algorithm with the low cost of SGD, and convergence rate of GD,
with constant step size!

Stochastic average gradient (SAG) algorithm proceeds as follows:
a n
LR :xk—%zyf
i=1

where

yi=t else

o {Vfi(:zk), i=ip

Here yf is an estimate of V f;(2") for each data 4. Has access to i;, and keeps a

memory of the recent gradient value computed for each 3.
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Convergence analysis

Assumptions
1. Each f; is convex and differentiable
2. Each gradient of f;, Vf; is Lipschitz constant with constant L, that is
IV fi(z) = VSiy)ll2 < Lllz — yll2
3. There is a minimizer x* of g.

4. (For 2nd part of theorem) g is strongly convex with constant u > 0, that is
g(z) — &||z||3 is convex.

Notations
1. average iterate 7F = L S~ 14

2. variance of gradient norms at the optimum o2 = Z NV fi@)3
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Theorem (convex case)
With a constant step size oy = ﬁ, the SAG iterations for k > 1 satisfy

E[g(z")] - g(2") < ==Co

Theorem (strongly convex case)

Further, if g is u-strongly convex, we have

Blg(ah)] — ga") < (1 - min{-E-, 1) ¢y

» Here, if we initialize with yg =0, we have
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Proof Outline

» For strongly convex case p > 0, consider a Lyapunov function of the form
k k T, k x kool (A B\ gk pe
L(0%) = 2hg(x" + de” y*) — 2hg(x™) + (0% — %) BT © (0% —0%)

whose expectation decreases at appropriate rate. Here we denote

. k .
e = e Ranp, ek’ _ Zk _ (yk) c R(n—i—l)p, 0 — : e R(n—i—l)p
; | V(@)
zF x*

A =aree’ +ayl,B=be,C =cI
L(0%) has parameters {a1, az,b,c,d, h}.

9/41



Proof Outline

» Show that for appropriate o > 0 and v > 0 that

(a) E(L(6%)|Fr—1) < (1= 0)L(6"1),

(b) L(6%) > ~v[g(a*) — g(a*)]
where Fj, is the o-field of information from time 1 to k, that is, the o-field
generated by i1, ..., ig.

» Find parameters {a1,as,b,c,d, h,a,7,0} that satisfies the above property.
Using a SOCP solver that solves the parameter constraint, we have

0 = min( ! L) =

8n’ 16L

> Take expectation on both results, and combine them to have

Blg(H)] - o) < (1 - min{ 2 L) 2 0)
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Proof Outline

> A slight modification of the above process gives the desired bound for general
convex case p = 0.

» Plugging in determined parameters to get initial values of the Lyapunov function.
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Comparison with Other Methods

» Binary classification using logistic regression, applied to 9 datasets (quantum,
protein, covertype, rcvl, news, spam, rcvlFull, sido, alpha) compared against
full-gradient or stochastic-gradient methods (AFG, L-BFGS, SG, ASG, LAG)

» SAG optimizes fast!

[E—
efoctve s Optrum

[
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Effect of Non-Un

» Sampling in proportion to gradient’s Lipschitz constants performs well.

P Intuition? We may not need to sample functions whose gradient changes slowly as

iform Sampling

much as ones whose gradient changes more quickly.

» Results for datasets where SAG didn't perform well.

Objective minus Optimum

'E;Ef__ . oo oo

e P W e
-..@-._A o= =

20 30
Effective Passes

20 30
Effective Passes
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SGD

Consider optimization problem
1
min f(w) = N Zfl(w)
i=1

where f1,...,fn :RT = R
SGD draw i; randomly from {1,---, N} and perform

w1 = we — eV fi, (wy)
or more generally
W1 = Wt — ntgt(wt, ft)

where &; is a random variable and E¢, [g:(wy, &)] = V f(wy); i.e., the expectation
E[wi41|wy] is identical to GD
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Pros

» Each step only relies on a single derivative V f;(-), thus the computational cost is
% that of the GD

» Popular for large scale optimization

Cons
» The randomness introduces variance

» If ||g¢(wy, & )| is large, then it has a relatively large variance which slows down the
convergence
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Convergence results

Suppose fi(w)'s are S-smooth and convex; and f(w) is a-strongly convex

GD

» As we choose 7y < % we have linear convergence rate of O((1 — %)t)

SGD
» Due to the variance of random sampling, generally need to choose 7; ~ O(%)

» Then obtain a slower sub-linear convergence rate of O(%)
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Motivation

The above implies we have a trade-off
» Slow computation per iteration and fast convergence for GD

> Fast computation per iteration and slow convergence for SGD

Then how can we improve the SGD?

» One practical issue for SGD : the learning rate 7; has to decay to zero - leads
to slower convergence

P> Need : allows us to use a larger learning rate 7

Why do we have to use small learning rate?

» Due to the variance
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Previous work — SAG (Schmidt et al. )
Draw i; randomly from {1,--- , N} and

0 N

t

W41 = Wt — E git
N i=1

where

9it—1 else

» only set g;, + = V fi,(w;) for a randomly chosen i; and all other g;;, ; are kept at
their previous value
» can think of SAG as having a memory

— g1t —

— 92t —

— 49Nt —
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Previous work — SDCA (Shalev-Shwartz and Zhang )

SDCA applies randomized coordinate ascent to the dual of ridge regularized problems,
and effective primal updates are similar to SAG

Consider the following problem with convex ¢;(w)

N
* 3 1 >\
w* = argmin f(w), flw) = NZ@(U)T%) + 5”“’”%
w i=1
The dual problem is
1Y >\ 1 & i
max D(«) where D(« N ; IV ;azxz
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Turn it into f;(w) = ¢;(x;) + %HwH% o be a optimal solution of dual.

And define w(a) = 15 SN i
» It is also known that f(w*) = D(a™)
» And also we have f(w) > D(«)
» The duality gap f(w(ay)) — D(ay) is lower bounded by f(w(ay)) — f(w*)

Stochastic Dual Coordinate Ascent rule, draw i; randomly from {1,--- , N}

i = d it T (Vi (wi) + ANait) i@ =1y
i,t+1 iy ; 7& it

and then update w as wy11 = wy + (41 — )
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Taking expectation yields the gradient descent rule

Ewt+1\wt = Wt — Utvf(wt)

We can think of SDCA also as having a memory

— Q1+ —

— Q24

— QN

Both proposals require storage of all gradients (or dual variables), makes it unsuitable

for more complex applications
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SVRG (Johnson and Zhang 2013)

Keep a snapshot of w every m SGD iterations while maintating the average gradient

= Vi) = - >0 Vi)
=1

Update the parameter as the following rule

w1 = wy — (Vi (wi) — Vi, (0) + 1)
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SVRG is special case of SGD

gi(we, &) = V fi, (w) = V fi, (W) + f2
equivalently, SVRG is a SGD of the auxiliary function

fir(w) = fi (w) = (V fiy (@) = )"
Since 31| (V fi() — i) = 0,
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Algorithm

Parameters: update frequency m and learning rate 7

Initialize: w0

for s=0,1,--- do

W $— Ws

~ 1 N ~

i & 2img VIi(w)

wo < W

fort=0,1,--- ,m—1do
Randomly pick iy € {1,2,--- , N} and update weight
wiyr = wy — N(V fi(wi) — V fi,(0) + 1)

end

option 1: W, 1 < wy,

option 2: W, « w; for randomly chosen t € {0,--- ,m — 1}

end

Algorithm 1: SVRG
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Note
» When both w and w; converges to the same parameter w*, then i — 0

> If Vfi(@) — Vfi(w*),then
Vii(w) =Vfi(@0)+p — Vfi(w)—-Vfi(w) — 0

» Unlike SGD, the learning rate 7; for SVRG does not have to decay, which leads
to faster convergence as one can use a relatively large learning rate.

Computational cost
» Each stage s requires N + 2m gradient computations
» One may save the intermediate gradients and thus only N + m gradient
computations are needed
» It is natural to choose m to be the same order of N but slightly larger
1. (for example) m = 2N for convex problems
2. m = 5N for nonconvex problems
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Convergence analysis

Theorem
Assume

» For each f;(w) is f-smooth, convex and f(w) is a-strongly convex
» SVRG with option 2, w* := argmin ,, f(w), Ro := f(wo) — f(w*)

» m is sufficiently large so that

<1

._ 1 4 201
P an(1=28n)ym " 1- 28y

then
Ef(is) — f(w*) < Rop®
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Proof

Given any i, consider g;(w) := fi(w) — f; (w*) — Vfi (w*) (w — w*)
Since Vg;(w*) =0, g;(w*) = min,, g;(w). Therefore,

0= g: () < min g (w — 7¥g:(0)]
< min [gi(w) ~ 09wl + 2L g, >H§} — i) ~ 55 V0w

which implies,

IV fi(w) =V f; (w)|5 < 28 | fi(w) = fi (w) = V f; (w*)" (w —w") (1)
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By summing (1) over i = 1,--- , N and using the fact that V f(w*) = 0, we obtain
N
~ 2 IV Silw) = Vi (w5 < 28 [f(w) = f (w")] (2)
i=1

On the other hand, let v; = V f;,(w) — V f;, (@) + i, then the conditional expectation
w.r.t ¢; conditioned on wy is

Ellvel3 < 2E [V i, (we) = V fi, (w3 + 2B [V fi, (@) = V fi, (w*)] = V(@)
= 2B |V f;, (we) = Vfi, (w*)ll3 + 2B [V fi, (@) = V fi, (w)]

—E[Vfi, (@) = Vi, ()] I3

(w

< 2BV fi, (wi) = V fir (w*)ll3 + 2E |V fi, (@) = V fi, (w)ll3 (. (2)

<AB[f (we) = f (W) + f(@) = f (w")] (3)
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This leads to,

E fJwisr = wll3 = [lwe — w*[[5 = 20 (we = w*) " Elvg] + 77 [[og]3
< Jwe — w*|3 = 27 (w — w*) TV f (wy)
+ 487 [f (we) = f (W) + f(@) = f ()] (. (3),E[ve] = V.f(wr))
< Jlwe = w* |3 = 20 [f (we) — f (w")]
+ 4677 [f (we) — f (w*) + f(@) = f (w*)] (. convexity of f(w))

= [lwe = w*[|3 — 2n(1 = 28n) [f (wr) — f (w*)] + 480> [f (@) — f (u()*;]
4
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We consider a fixed stage s — 1, w = w,_1 and ;s is selected by option 2, then
summing (4) over t =0,--- ,m — 1 and taking expectation,

B |Jwm — w*|[5 + 2n(1 — 28n)mE [f (is) — f (w*)]
< E|lwo — w3 + 4BmnE[f (@) — f (w*)]
=E |[& — w*|5 + 48mi*E[f(d) — f (w*)]
< ZE[f(@) - f (w")] + 46mrPE (@) - f (")
(" strongly convexity of f(w))

— 2 (o + 28mi?) E[f(@) — f (")
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Thus we obtain

1 2061

E[f (@) = F @] < | o 550m + T2

which implies the desired bound Ef(ws) — f(w*) < Rop®
L]
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Analysis

smooth but not strongly convex case

> A convergence rate of O(1) may be obtained

> which improves the standard SGD convergence rate of O(--)

S
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Analysis

SDCA as Variance Reduction

It can be shown that both SDCA is connected to SVRG in the sense they are also a
variance reduction methods for SGD

» The advantage of SDCA is that we may take a larger step when t — o
> Since f(w*) = D(a*), (w(ay), ) = (w*,a*) = Vow)+ ANa — 0
> It means that even if 7, stays bounded away from zero, the procedure can converge

SDCA is also a variance reduction method for SGD, which is similar to SVRG
But SVRG is is simpler, more intuitive, and easier to analyze
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Experiments

Compare to SGD and SDCA with linear predictors(convex) and neural nets(nonconvex)

P> The x-axis is computational cost measured by the number of gradient
computations divided by N

» For SGD, it is the number of passes to go through the training data

A\

The interval m was set to 2N (convex) and 5N (nonconvex)

» The weights for SVRG were initialized by performing 1 iteration(convex) or 10
iterations(nonconvex) of SGD
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Experiments

L2-regularized multiclass logistic regression (convex optimization) on MNIST

0.31
———SGD:0.005
0.3
- \ ———SGD:0.0025
§ 0.29 SGD:6:001
8 () 9g \ e SVRG:0.025
£
8 0.27 -
2 0.26
0.25 T
0 50
#igrad/n

Figure: Training loss comparison with

SGD with fixed LR

100

» When a relatively large learning rate 7 is used

with SGD, it oscillates above the minimum and

never goes down to the minimum
SVRG smoothly goes down faster than SGD

Relatively large n with SVRG leads to faster
convergence
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Experiments

L2-regularized multiclass logistic regression (convex optimization) on MNIST

g 1E+02 'MNIST convex: training loss residual
= P(w)-P(w.
R
& 1E04 —
e
o 1E-07 S » SGD with best scheduling of exponential decay,
S 1E-13 ' " » SVRG's loss residual goes down exponentially
3 0 50 100 _ R _
e sgrad / n » SVRG is competitive with SDCA (the two lines
are almost overlapping)
SVRG ~ ====- SDCA
SGD-best  — - - SGD:0.001 » SVRG decreases faster than SGD-best

Figure: Training loss residual
fw) — f(w*); comparison with
best-tuned SGD and SDCA
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Experiments

L2-regularized multiclass logistic regression (convex optimization) on MNIST

Variance

1E+02
1E-01
1E-04
1E-07
1E-10
1E-13
1E-16

__ MNIST convex: update variance

TN P Including multiplication with the learning rate

\ > SGD with a fixed learning rate (‘SGD:0.001')

0 50 100 stays high

#grad/n » The variance of the best-tuned SGD decreases

SVRG ~  ====- SDCA
SGD-best — . =SGD:0.001” SVRG decreases faster than SGD-best

SGD-best/n(t)

Figure: Variance of weight update
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Experiments
Neural nets on MNIST

1E+0 MNIST nonconvex 0.11 MNIST nonconvex

1E-1 SGD-best
. SGD-best/(t) & 0.105 1\ ———=gVRG
&1E-2 +~———8GD-best

g SVRG
£1E-3 AT

=2

e \-
1E-5

0 100 200 0 100 200
#grad/n #grad/n

Figure: Neural net results(nonconvex)

FC layer of 100 nodes and softmax
output; sigmoid activation and L2
regularization

» Mini-batches of size 10

SVRG reduces the variance and
converges faster than the best-tuned
SGD

SDCA and SAG are not practical for
neural nets due to their memory
requirement
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Conclusion

» Introduces an explicit variance reduction method for SGD
» Provide that this method enjoys the same fast convergence rate as those of SDCA
and SAG

» unlike SDCA or SAG, this method does not require the storage of gradients, and
thus is more easily applicable to complex problems
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Any questions?
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