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Problem Setup
Many machine learning problem involves optimizing the following problem

min
x∈Rp

g(x) :=
1

n

n∑
i=1

fi(x)

where each fi is smooth and convex. Often we deal with cases where g is strongly
convex.

For optimization, gradient descent (GD, full gradient) method iterates by

xk+1 = xk − αk∇g(xk) = xk − αk
n

n∑
i=1

∇fi(xk)

Stochastic gradient descent (SGD) method iterates by

xk+1 = xk − αk∇fik(xk)

where ik is sampled uniformly from {1, ..., n}.
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GD vs SGD
For GD, suboptimality bound at iteration k, using constant αk, is given as

g(xk)− g(x∗) = O(1/k)

if each fi is smooth and convex.

g(xk)− g(x∗) = O(ρk), ρ < 1

if in addition, g is strongly convex.

For SGD, suboptimality bound at iteration k, using decreasing αk, is given as

E[g(xk)]− g(x∗) = O(1/
√
k)

if each fi is smooth and convex.

E[g(xk)]− g(x∗) = O(1/k)

if in addition, g is strongly convex.
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SAG

Want to have an algorithm with the low cost of SGD, and convergence rate of GD,
with constant step size!

Stochastic average gradient (SAG) algorithm proceeds as follows:

xk+1 = xk − αk
n

n∑
i=1

yki

where

yki =

{
∇fi(xk), i = ik

yk−1i , else

Here yki is an estimate of ∇fi(xk) for each data i. Has access to ik and keeps a

memory of the recent gradient value computed for each i.
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Convergence analysis

Assumptions

1. Each fi is convex and differentiable

2. Each gradient of fi, ∇fi is Lipschitz constant with constant L, that is
‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2

3. There is a minimizer x∗ of g.

4. (For 2nd part of theorem) g is strongly convex with constant µ > 0, that is
g(x)− µ

2‖x‖
2
2 is convex.

Notations

1. average iterate x̄k = 1
k

∑k−1
i=0 x

i

2. variance of gradient norms at the optimum σ2 = 1
n

∑k−1
i=0 ‖∇fi(x∗)‖22
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Theorem (convex case)

With a constant step size αk = 1
16L , the SAG iterations for k ≥ 1 satisfy

E[g(x̄k)]− g(x∗) ≤ 32n

k
C0

Theorem (strongly convex case)

Further, if g is µ-strongly convex, we have

E[g(xk)]− g(x∗) ≤
(

1−min
{ µ

16L
,

1

8n

})k
C0

I Here, if we initialize with y0i = 0, we have

C0 = g(x0)− g(x∗) +
4L

n
‖x0 − x∗‖22 +

σ2

16L

I and if we initialize with y0i = ∇fi(x0)−∇g(x∗), we have

C0 =
3

2
[g(x0)− g(x∗)] +

4L

n
‖x0 − x∗‖22
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Proof Outline

I For strongly convex case µ ≥ 0, consider a Lyapunov function of the form

L(θk) = 2hg(xk + deT yk)− 2hg(x∗) + (θk − θ∗)T
(
A B
BT C

)
(θk − θ∗)

whose expectation decreases at appropriate rate. Here we denote

e =

I...
I

 ∈ Rnp×p, θk =


yk1
...
ykn
xk

 =

(
yk

xk

)
∈ R(n+1)p, θ∗ =


∇f1(x∗)

...
∇fn(x∗)

x∗

 ∈ R(n+1)p

A = a1ee
T + a2I,B = be, C = cI

L(θk) has parameters {a1, a2, b, c, d, h}.
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Proof Outline
I Show that for appropriate σ ≥ 0 and γ ≥ 0 that

(a) E(L(θk)|Fk−1) ≤ (1− δ)L(θk−1),

(b) L(θk) ≥ γ[g(xk)− g(x∗)]

where Fk is the σ-field of information from time 1 to k, that is, the σ-field
generated by i1, ..., ik.

I Find parameters {a1, a2, b, c, d, h, α, γ, σ} that satisfies the above property.
Using a SOCP solver that solves the parameter constraint, we have

δ = min(
1

8n
,
µ

16L
), γ = 1

I Take expectation on both results, and combine them to have

E[g(xk)]− g(x∗) ≤
(

1−min
{ µ

16L
,

1

8n

})k
L(θ0)
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Proof Outline

I A slight modification of the above process gives the desired bound for general
convex case µ = 0.

I Plugging in determined parameters to get initial values of the Lyapunov function.
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Comparison with Other Methods
I Binary classification using logistic regression, applied to 9 datasets (quantum,

protein, covertype, rcv1, news, spam, rcv1Full, sido, alpha) compared against
full-gradient or stochastic-gradient methods (AFG, L-BFGS, SG, ASG, LAG)

I SAG optimizes fast!
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Effect of Non-Uniform Sampling

I Sampling in proportion to gradient’s Lipschitz constants performs well.

I Intuition? We may not need to sample functions whose gradient changes slowly as
much as ones whose gradient changes more quickly.

I Results for datasets where SAG didn’t perform well.
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SGD

Consider optimization problem

min f(w) =
1

N

N∑
i=1

fi(w)

where f1, . . . , fN : Rd → R

SGD draw it randomly from {1, · · · , N} and perform

wt+1 = wt − ηt∇fit(wt)

or more generally
wt+1 = wt − ηtgt(wt, ξt)

where ξt is a random variable and Eξt [gt(wt, ξt)] = ∇f(wt); i.e., the expectation
E[wt+1|wt] is identical to GD
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Pros

I Each step only relies on a single derivative ∇fi(·), thus the computational cost is
1
N that of the GD

I Popular for large scale optimization

Cons

I The randomness introduces variance

I If ‖gt(wt, ξt)‖ is large, then it has a relatively large variance which slows down the
convergence
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Convergence results

Suppose fi(w)’s are β-smooth and convex; and f(w) is α-strongly convex

GD

I As we choose ηt <
1
β , we have linear convergence rate of O((1− α

β )t)

SGD

I Due to the variance of random sampling, generally need to choose ηt ∼ O(1t )

I Then obtain a slower sub-linear convergence rate of O(1t )
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Motivation

The above implies we have a trade-off

I Slow computation per iteration and fast convergence for GD

I Fast computation per iteration and slow convergence for SGD

Then how can we improve the SGD?

I One practical issue for SGD : the learning rate ηt has to decay to zero - leads
to slower convergence

I Need : allows us to use a larger learning rate ηt

Why do we have to use small learning rate?

I Due to the variance
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Previous work – SAG (Schmidt et al. 2017)
Draw it randomly from {1, · · · , N} and

wt+1 = wt −
ηt
N

N∑
i=1

gi,t

where

gi,t =

{
∇fi(wt) if i = it

gi,t−1 else

I only set git,t = ∇fit(wt) for a randomly chosen it and all other gi 6=it,t are kept at
their previous value

I can think of SAG as having a memory
—– g1,t —–
—– g2,t —–

...
—– gN,t —–
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Previous work – SDCA (Shalev-Shwartz and Zhang 2013)

SDCA applies randomized coordinate ascent to the dual of ridge regularized problems,
and effective primal updates are similar to SAG

Consider the following problem with convex φi(w)

w∗ = arg min
w

f(w), f(w) =
1

N

N∑
i=1

φi(w
Txi) +

λ

2
‖w‖22

The dual problem is

max
α∈Rd

D(α) where D(α) =

 1

N

N∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1

λN

N∑
i=1

αixi

∥∥∥∥∥
2
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Turn it into fi(w) = φi(xi) + λ
2‖w‖

2
2, α∗ be a optimal solution of dual.

And define w(αt) = 1
λN

∑N
i=1 αi,t

I It is also known that f(w∗) = D(α∗)

I And also we have f(w) ≥ D(α)

I The duality gap f(w(αt))−D(αt) is lower bounded by f(w(αt))− f(w∗)

Stochastic Dual Coordinate Ascent rule, draw it randomly from {1, · · · , N}

αi,t+1 =

{
αi,t − ηt (∇φi (wt) + λNαi,t) i = it
αi,t i 6= it

and then update w as wt+1 = wt + (αt+1 − αt)
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Taking expectation yields the gradient descent rule

Ewt+1|wt = wt − ηt∇f(wt)

We can think of SDCA also as having a memory
—– α1,t —–
—– α2,t —–

...
—– αN,t —–



Both proposals require storage of all gradients (or dual variables), makes it unsuitable
for more complex applications
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SVRG (Johnson and Zhang 2013)

Keep a snapshot of w̃ every m SGD iterations while maintating the average gradient

µ̃ = ∇f(w̃) =
1

N

n∑
i=1

∇fi(w̃)

Update the parameter as the following rule

wt+1 = wt − ηt(∇fit(wt)−∇fit(w̃) + µ̃)
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SVRG is special case of SGD

gt(wt, ξt) = ∇fit(wt)−∇fit(w̃) + µ̃

equivalently, SVRG is a SGD of the auxiliary function

f̃it(w) := fit(w)− (∇fit(w̃)− µ̃)Tw

Since
∑N

i=1(∇fi(w̃)− µ̃) = 0,

f(w) =

N∑
i=1

fi(w) =

N∑
i=1

f̃i(w)
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Algorithm

Parameters: update frequency m and learning rate η
Initialize: w̃0

for s = 0, 1, · · · do
w̃ ← w̃s
µ̃← 1

N

∑N
i=1∇fi(w̃)

w0 ← w̃
for t = 0, 1, · · · ,m− 1 do

Randomly pick it ∈ {1, 2, · · · , N} and update weight
wt+1 = wt − η(∇fit(wt)−∇fit(w̃) + µ̃)

end
option 1: w̃s+1 ← wm
option 2: w̃s+1 ← wt for randomly chosen t ∈ {0, · · · ,m− 1}

end
Algorithm 1: SVRG
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Note

I When both w̃ and wt converges to the same parameter w∗, then µ̃→ 0

I If ∇fi(w̃)→ ∇fi(w∗),then

∇fi (wt)−∇fi(w̃) + µ̃ → ∇fi (wt)−∇fi (w∗) → 0

I Unlike SGD, the learning rate ηt for SVRG does not have to decay, which leads
to faster convergence as one can use a relatively large learning rate.

Computational cost

I Each stage s requires N + 2m gradient computations

I One may save the intermediate gradients and thus only N +m gradient
computations are needed

I It is natural to choose m to be the same order of N but slightly larger

1. (for example) m = 2N for convex problems
2. m = 5N for nonconvex problems
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Convergence analysis

Theorem
Assume

I For each fi(w) is β-smooth, convex and f(w) is α-strongly convex

I SVRG with option 2, w∗ := arg minw f(w), R0 := f(w̃0)− f(w∗)

I m is sufficiently large so that

ρ :=
1

αη(1− 2βη)m
+

2βη

1− 2βη
< 1

then
Ef(w̃s)− f(w∗) ≤ R0ρ

s
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Proof

Given any i, consider gi(w) := fi(w)− fi (w∗)−∇fi (w∗)> (w − w∗)
Since ∇gi(w∗) = 0, gi(w

∗) = minw gi(w). Therefore,

0 = gi (w∗) ≤ min
η

[gi (w − η∇gi(w))]

≤ min
η

[
gi(w)− η ‖∇gi(w)‖22 +

βη2

2
‖∇gi(w)‖22

]
= gi(w)− 1

2β
‖∇gi(w)‖22

which implies,

‖∇fi(w)−∇fi (w∗)‖22 ≤ 2β
[
fi(w)− fi (w∗)−∇fi (w∗)> (w − w∗)

]
(1)
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By summing (1) over i = 1, · · · , N and using the fact that ∇f(w∗) = 0, we obtain

1

N

N∑
i=1

‖∇fi(w)−∇fi (w∗)‖22 ≤ 2β [f(w)− f (w∗)] (2)

On the other hand, let vt = ∇fit(wt)−∇fit(w̃) + µ̃, then the conditional expectation
w.r.t it conditioned on wt is

E‖vt‖22 ≤ 2E ‖∇fit (wt)−∇fit (w∗)‖22 + 2E ‖[∇fit(w̃)−∇fit (w∗)]−∇f(w̃)‖22
= 2E ‖∇fit (wt)−∇fit (w∗)‖22 + 2E‖ [∇fit(w̃)−∇fit (w∗)]

− E [∇fit(w̃)−∇fit (w∗)] ‖22
≤ 2E ‖∇fit (wt)−∇fit (w∗)‖22 + 2E ‖∇fit(w̃)−∇fit (w∗)‖22 (∵ (2))

≤ 4β [f (wt)− f (w∗) + f(w̃)− f (w∗)] (3)
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This leads to,

E ‖wt+1 − w∗‖22 = ‖wt − w∗‖22 − 2η (wt − w∗)> E[vt] + η2E ‖vt‖22
≤ ‖wt − w∗‖22 − 2η (wt − w∗)>∇f (wt)

+ 4βη2 [f (wt)− f (w∗) + f(w̃)− f (w∗)] (∵ (3),E[vt] = ∇f(wt))

≤ ‖wt − w∗‖22 − 2η [f (wt)− f (w∗)]

+ 4βη2 [f (wt)− f (w∗) + f(w̃)− f (w∗)] (∵ convexity of f(w))

= ‖wt − w∗‖22 − 2η(1− 2βη) [f (wt)− f (w∗)] + 4βη2 [f(w̃)− f (w∗)]
(4)
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We consider a fixed stage s− 1, w̃ = w̃s−1 and w̃s is selected by option 2, then
summing (4) over t = 0, · · · ,m− 1 and taking expectation,

E ‖wm − w∗‖22 + 2η(1− 2βη)mE [f (w̃s)− f (w∗)]

≤ E ‖w0 − w∗‖22 + 4βmη2E [f(w̃)− f (w∗)]

= E ‖w̃ − w∗‖22 + 4βmη2E [f(w̃)− f (w∗)]

≤ 2

α
E [f(w̃)− f (w∗)] + 4βmη2E [f(w̃)− f (w∗)]

(∵ strongly convexity of f(w))

= 2
(
α−1 + 2βmη2

)
E [f(w̃)− f (w∗)]
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Thus we obtain

E [f (w̃s)− f (w∗)] ≤
[

1

αη(1− 2βη)m
+

2βη

1− 2βη

]
E [f (w̃s−1)− f (w∗)]

which implies the desired bound Ef(w̃s)− f(w∗) ≤ R0ρ
s

32 / 41



Analysis
smooth but not strongly convex case

I A convergence rate of O(1t ) may be obtained

I which improves the standard SGD convergence rate of O( 1√
t
)
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Analysis
SDCA as Variance Reduction

It can be shown that both SDCA is connected to SVRG in the sense they are also a
variance reduction methods for SGD

I The advantage of SDCA is that we may take a larger step when t→∞
I Since f(w∗) = D(α∗), (w(αt), αt)→ (w∗, α∗) =⇒ ∇φ(w) + λNα→ 0
I It means that even if ηt stays bounded away from zero, the procedure can converge

SDCA is also a variance reduction method for SGD, which is similar to SVRG
But SVRG is is simpler, more intuitive, and easier to analyze
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Experiments

Compare to SGD and SDCA with linear predictors(convex) and neural nets(nonconvex)

I The x-axis is computational cost measured by the number of gradient
computations divided by N

I For SGD, it is the number of passes to go through the training data

I The interval m was set to 2N (convex) and 5N (nonconvex)

I The weights for SVRG were initialized by performing 1 iteration(convex) or 10
iterations(nonconvex) of SGD
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Experiments
L2-regularized multiclass logistic regression (convex optimization) on MNIST

Figure: Training loss comparison with
SGD with fixed LR

I When a relatively large learning rate η is used
with SGD, it oscillates above the minimum and
never goes down to the minimum

I SVRG smoothly goes down faster than SGD

I Relatively large η with SVRG leads to faster
convergence
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Experiments
L2-regularized multiclass logistic regression (convex optimization) on MNIST

Figure: Training loss residual
f(w)− f(w∗); comparison with
best-tuned SGD and SDCA

I SGD with best scheduling of exponential decay,
adaptive

I SVRG’s loss residual goes down exponentially

I SVRG is competitive with SDCA (the two lines
are almost overlapping)

I SVRG decreases faster than SGD-best
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Experiments
L2-regularized multiclass logistic regression (convex optimization) on MNIST

Figure: Variance of weight update

I Including multiplication with the learning rate

I SGD with a fixed learning rate (‘SGD:0.001’)
stays high

I The variance of the best-tuned SGD decreases

I SVRG decreases faster than SGD-best

38 / 41



Experiments
Neural nets on MNIST

Figure: Neural net results(nonconvex)

I FC layer of 100 nodes and softmax
output; sigmoid activation and L2
regularization

I Mini-batches of size 10

I SVRG reduces the variance and
converges faster than the best-tuned
SGD

I SDCA and SAG are not practical for
neural nets due to their memory
requirement
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Conclusion

I Introduces an explicit variance reduction method for SGD

I Provide that this method enjoys the same fast convergence rate as those of SDCA
and SAG

I unlike SDCA or SAG, this method does not require the storage of gradients, and
thus is more easily applicable to complex problems
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Any questions?
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