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Definition
f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

I f is concave if −f is convex

I f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 ≤ θ ≤ 1
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Examples on R

Convex

I affine: ax+ b on R, for any a, b ∈ R
I exponential: eax, for any a ∈ R
I powers: xα on R++, for α ≥ 1 or α ≤ 0

I powers of absolute value: |x|p on R, for p ≥ 1

I negative entropy: x log x on R++

Concave

I affine: ax+ b on R, for any a, b,∈ R
I powers: xα on R++, for 0 ≤ α ≤ 1

I logarithm: log x on R++
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Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

Examples on Rn

I affine function f(x) = a>x+ b

I norms: ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

Examples on Rm×n (m× n matrices)

I affine function

f(X) = tr(A>X) + b =
m∑
i=1

n∑
j=1

AijXij + b

I 2-norm (spectral norm): maximum singular value

f(X) = ‖X‖2 = σmax(X) = (λmax(X
>X))1/2
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Restriction of a convex function to a line
f : Rn → R is convex if and only if the function g : R→ R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

Example: f : Sn → R with f(X) = log detX, dom f = Sn++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n∑
i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X � 0, V ); hence f is concave
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Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) =∞, x /∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

I dom f is convex

I for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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First-order condition
f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
exists at each x ∈ dom f

First-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)>(y − x) for all x, y ∈ dom f

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

Second-order conditions: for twice differentiable f with convex domain

I f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

I if ∇2f(x) � 0 for all x dom f , then f is strictly convex
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Examples
Quadratic function: f(x) = (1/2)x>Px+ q>x+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

Least squares objective: f(x) = ‖Ax− b‖22
∇f(x) = 2A>(Ax− b), ∇2f(x) = 2A>A

convex (for any A)

Quadratic-over-linear function: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]>
� 0

convex for y > 0
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Examples

Log-sum-exp function: f(x) = log
∑n

k=1 expxk is convex

∇2f(x) =
1

1>z
diag(z)− 1

(1>z)2
zz> with zk = expxk

to show ∇2f(x) � 0, we must verify that v>∇2f(x)v ≥ 0 for all v:

v>∇2f(x)v =
(
∑n

k=1 zkv
2
k)(
∑n

k=1 zk)− (
∑n

k=1 vkzk)
2

(
∑n

k=1 zk)
2

≥ 0

since (
∑

k vkzk)
2 ≤ (

∑
k zkv

2
k)(
∑

k zk) (from Cauchy-Schwarz inequality)

Geometric mean: f(x) = (
∏n
k=1 xk)

1/n on Rn++ is concave
(similar proof as for log-sum-exp)
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Epigraph and sublevel set
α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

Epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

f is convex if and only if epi f is a convex set
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Jensen’s inequality

Basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Extension: if f is convex, then

f(Ez) ≤ Ef(z)

for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) = θ, prob(z = y) = 1− θ
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Operations that preserve convexity

methods for establishing convexity of a function

1. very definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations that preserve
convexity
I nonnegative weighted sum
I composition with affine function
I pointwise maximum and supremum
I composition
I minimization
I perspective
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Positive weighted sum and composition with affine function

Nonnegative multiple: αf is convex if f is convex, α ≥ 0

Sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax+ b) is convex if f is convex

Examples

I logarithmic barrier for linear inequalities

f(x) = −
m∑
i=1

log(bi − a>i x), dom f = {x | a>i x < bi, i = 1, . . . ,m}

I (any) norm of affine function: f(x) = ‖Ax+ b‖
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Pointwise maximum

if f1, . . . , fm are convex, then

f(x) = max{f1(x), . . . , fm(x)}

is convex

Examples

I piecewise-linear function: f(x) = maxi=1,...,m(a>i x+ bi) is convex

I sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof: f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum
if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

Examples

I support function of a set: SC(x) = supy∈C y
>x is convex for any set C

I distance to farthest point in a set C:

f(x) = sup
y∈C
‖x− y‖

I maximum eigenvalue of symmetric matrix: for X ∈ Sn

λmax(X) = sup
‖y‖2=1

y>Xy
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Composition with scalar functions

composition of g : Rn → R and h : R→ R:

f(x) = h(g(x))

f is convex if

{
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

I proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

I note: monotonicity must hold for extended-value extension h̃

Examples

I exp g(x) is convex if g is convex

I 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if

{
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

I proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)>∇2h(g(x))g′(x) +∇h(g(x))>g′′(x)

Examples

I
∑m

i=1 log gi(x) is concave if gi are concave and positive

I log
∑m

i=1 log gi(x) is convex if gi are convex

19 / 31



Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

Examples

I f(x, y) = x>Ax+ 2x>By + y>Cy with[
A B
B> C

]
� 0, C � 0

minimizing over y gives g(x) = infy f(x, y) = x>(A−BC−1B>)x
g is convex, hence Schur complement A−BC−1B> � 0

I distance to a set: d(x, S) = infy∈S ‖x− y‖ is convex if S is convex
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Perspective
the perspective of a function f : Rn → R is the function g : Rn × R→ R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

Examples

I f(x) = x>x is convex; hence g(x, t) = x>x/t is convex for t > 0

I negative logarithm f(x) = − log x is convex; hence relative entropy

g(x, t) = t log t− t log x

is convex on R2
++

I if f is convex, then

g(x) = (c>x+ d)f
(
(Ax+ b)/(c>x+ d)

)
is convex on {x | c>x+ d > 0, (Ax+ b)/(c>x+ d) ∈ dom f}
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The conjugate function
the conjugate of a function f is

f∗(y) = sup
x∈dom f

(y>x− f(x))

I f∗ is convex (even if f is not)
I will be useful in chapter 5
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Examples

I negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{
−1− log(−y) y < 0

∞ otherwise

I strictly convex quadratic f(x) = (1/2)x>Qx with Q ∈ Sn++

f∗(y) = sup
x

(y>x− (1/2)x>Qx)

=
1

2
y>Q−1y
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Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

Sα = [a, b]

Sβ = (−∞, c)

I f is quasiconcave if −f is quasiconvex

I f is quasilinear if it is quasiconvex and quasiconcave
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Examples

I
√
|x| is quasiconvex on R

I ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

I log x is quasilinear on R++

I f(x1, x2) = x1x2 is quasiconcave on R2
++

I linear-fractional function

f(x) =
a>x+ b

c>x+ d
, dom f = {x | c>x+ d > 0}

I distance ratio

f(x) =
‖x− a‖2
‖x− b‖2

, dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}

is quasiconvex
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Internal rate of return
I cash flow x = (x0, . . . , xn); xi is payment in period i (to us if xi > 0)

I we assume x0 < 0 and x0 + x1 + · · ·+ xn > 0

I present value of cash flow x, for interest rate r:

PV (x, r) =

n∑
i=0

(1 + r)−ixi

I internal rate of return is smallest interest rate for which PV (x, r) = 0:

IRR(x) = inf{r ≥ 0 | PV (x, r) = 0}

IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) ≥ R ⇐⇒
n∑
i=0

(1 + r)−1xi > 0 for 0 ≤ r < R
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Properties
Modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

First-order condition: differentiable f with cvx domain is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)>(y − x) ≤ 0

Sums: sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions
a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

I powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

I many common probability densities are log-concave, e.g., normal:

f(x) =
1√

(2π)n det Σ
e−

1
2

(x−x̄)>Σ−1(x−x̄)

I cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du
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Properties of log-concave functions

I twice differentiable f with convex domain is log-concave if and only if

f(x)∇2f(x) � ∇f(x)∇f(x)> for all x ∈ dom f

I product of log-concave functions is log-concave

I sum of log-concave functions is not always log-concave

I integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫
f(x, y)dy

is log-concave (not easy to show)
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Consequences of integration property

I convolution f ∗ g of log-concave functions f, g is log-concave

(f ∗ g)(x) =

∫
f(x− y)g(y)dy

I if C ⊂ Rn convex and y is a random variable with log-concave p.d.f. then

f(x) = prob(x+ y ∈ C)

is log-concave
proof: write f(x) as integral of product of log-concave functions

f(x) =

∫
g(x+ y)p(y)dy, g(u) =

{
1 u ∈ C
0 u /∈ C,

p is p.d.f. of y
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Example: yield function

Y (x) = prob(x+ w ∈ S)

I x ∈ Rn: nominal parameter values for product

I w ∈ Rn: random variations of parameters in manufactured product

I S: set of acceptable values

if S is convex and w has a log-concave p.d.f., then

I Y is log-concave

I yield regions {x | Y (x) ≥ α} are convex
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