CSED700H: Convex Optimization

Convex optimization problems¹

Namhoon Lee

POSTECH

Fall 2023

¹slides credits to Prof. Lieven Vandenberghe

Contents

- standard form (convex) optimization problem
- quasiconvex optimization
- ▶ linear optimization
- quadratic optimization
- geometric programming
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

- $ightharpoonup x \in \mathbb{R}^n$ is the optimization variable
- $lackbox{}{} f_0:\mathbb{R}^n
 ightarrow \mathbb{R}$ is the objective or cost function
- $lackbox{} f_i:\mathbb{R}^n
 ightarrow \mathbb{R}$ for $i=1,\ldots,m$ are the inequality constraint functions
- $ightharpoonup h_i:\mathbb{R}^n o\mathbb{R}$ for $i=1,\ldots,p$ are the equality constraint functions

Optimal value

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $ightharpoonup p^* = \infty$ if the problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if the problem is unbounded below

Optimal and locally optimal points

- ightharpoonup x is **feasible** if $x \in \text{dom } f_0$ and it satisfies the constraints
- ightharpoonup a feasible x is **optimal** if $f_0(x) = p^*$
- ightharpoonup x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$
subject to $f_i(z) \le 0, \qquad i = 1, \dots, m$
 $h_i(z) = 0, \qquad i = 1, \dots, p$
 $\|z - x\|_2 \le R$

Examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$ with $\operatorname{dom} f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- $ightharpoonup f_0(x) = -\log x \text{ with } \operatorname{dom} f_0 = \mathbb{R}_{++} \colon p^* = -\infty$
- $ightharpoonup f_0(x) = x \log x$ with dom $f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$: $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- \blacktriangleright we call $\mathcal D$ the **domain** of the problem
- ▶ the constraints $f_i(x) \le 0, h_i(x) = 0$ are the explicit constraints
- ightharpoonup a problem is **unconstrained** if it has no explicit constraints (m=p=0)
- the distinction will be important when we discuss duality

Example

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^\top x)$$

this is an unconstrained problem with implicit constraints $a_i^{\top} x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0, \quad i = 1, ..., m$$

 $h_i(x) = 0, \quad i = 1, ..., p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

this formulation is not meant as a practical method for solving feasibility problems

Convex optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $a_i^\top x = b_i, \quad i = 1, \dots, p$

- $ightharpoonup f_0, f_1, \ldots, f_m$ are convex functions
- equality constraints are linear
- often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

▶ important property: feasible set of a convex optimization problem is convex

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- $ightharpoonup f_0$ is convex
- feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- \blacktriangleright not a convex problem (according to our definition): f_1 not convex, h_1 not affine
- ▶ the problem is equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any local optimal point of a convex problem is (globally) optimal

ightharpoonup suppose x is locally optimal: there is an R>0 such that

$$z$$
 feasible, $||z-x||_2 \le R \implies f_0(z) \ge f_0(x)$

- lacktriangle suppose if x is not globally optimal: there exists a feasible y with $f_0(y) < f_0(x)$
- ightharpoonup convex combinations of x and y are feasible
- lacktriangle cost function at convex combination of x and y with $0 < \theta \le 1$ satisfies

$$f_0((1-\theta)x + \theta y) \leq (1-\theta)f_0(x) + \theta f_0(y)$$

$$\leq (1-\theta)f_0(x) + \theta f_0(x)$$

$$= f_0(x)$$

• for $0 < \theta \le R/\|y - x\|_2$ this contradicts the assumption of local optimality of x

Optimality criterion for differentiable f_0

 \boldsymbol{x} is optimal if and only if it is feasible and

$$\nabla f_0(x)^{\top}(y-x) \geq 0$$
 for all feasible y

if nonzero, $abla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Proof (necessity)

- lacktriangle consider feasible $y \neq x$ and define line segment $I = \{x + t(y x) \mid 0 \leq t \leq 1\}$
- by convexity of X, points in I are feasible
- let $g(t) = f_0(x + t(y x))$ be the restriction of f_0 to I
- ightharpoonup derivative at t is $g'(t) = \nabla f_0(x + t(y x))^{\top}(y x)$, so

$$g'(0) = \nabla f_0(x)^\top (y - x)$$

▶ if $g'(0) = \nabla f_0(x)^{\top}(y-x) < 0$, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and $\nabla f_0(x)^{\top}(y-x) \geq 0$, then, by convexity of f_0 ,

$$f_0(y) \geq f_0(x) + \nabla f_0(x)^\top (y - x)$$

$$\geq f_0(x)$$

Examples

Unconstrained problem: x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$$

(recall our assumption that $dom f_0$ is an open set if f_0 is differentiable)

Minimization over nonnegative orthant

minimize
$$f_0(x)$$

subject to $x \succeq 0$

x is optimal if and only if

$$x \in \text{dom } f_0,$$
 $x \succeq 0,$
$$\begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equality constrained problem

minimize
$$f_0(x)$$

subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \text{dom } f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^{\top} \nu = 0$$

- first two conditions are feasibility of x
- lacktriangle gradient $\nabla f_0(x)$ can always be decomposed as $\nabla f_0(x) + A^{\top} \nu = w$ with Aw = 0
- ightharpoonup if w=0, the optimality condition holds:

$$\nabla f_0(x)^\top (y-x) = -\nu^\top A(y-x) = 0 \quad \text{for all } y \text{ with } Ay = b$$

▶ if $w \neq 0$, condition does not hold: y = x - tw is feasible for small t > 0,

$$\nabla f_0(x)^{\top}(y-x) = -t(w - A^{\top}\nu)^{\top}w = -t||w||_2^2 < 0$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

Eliminating equality constraints

minimize
$$f_0(x)$$
 minimize $f_0(Fz + x_0)$
subject to $f_i(x) \le 0$, $i = 1, ..., m$ subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$
 $Ax = b$

- $ightharpoonup x_0$ is any solution of $Ax_0=b$ and the columns of F span the nullspace of A
- ightharpoonup variables in second problem are z

Introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$
 minimize $f_0(y_0)$
subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$ subject to $f_i(y_i) \le 0$, $i = 1, ..., m$
 $y_i = A_ix + b_i$, $i = 1, ..., m$

variables in second problem are x, y_0, y_1, \dots, y_m

14 / 49

Equivalent convex problems

Epigraph form

minimize
$$f_0(x)$$
 minimize t subject to $f_i(x) \le 0$, $i = 1, ..., m$ subject to $f_0(x) - t \le 0$ $Ax = b$ $f_i(x) \le 0$,

minimize
$$t$$
 subject to $f_0(x) - t \le 0$
$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

$$Ax = b$$

variables in second problem are x, t

Minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$
where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

- $ightharpoonup f_0$ is quasiconvex
- $ightharpoonup f_1,\ldots,f_m$ are convex

can have locally optimal points that are not (globally) optimal

Convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $ightharpoonup \phi_t(x)$ is convex in x for fixed t
- ▶ t-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

Example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\mathrm{dom}\, f_0$

can take $\phi_t(x) = p(x) - tq(x)$:

- ▶ for $t \ge 0$, ϕ_t convex in x
- ▶ $p(x)/g(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \quad f_i(x) \le 0, \quad i = 1, \dots, m, \quad Ax = b$$
 (1)

- \blacktriangleright for fixed t, a convex feasibility problem in x
- \blacktriangleright if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method

given: $l \leq p^{\star}$, $u \geq p^{\star}$, tolerance $\epsilon > 0$ repeat

- 1. t := (l + u)/2
- 2. solve the convex feasibility problem (1)
- 3. if (1) is feasible, $u \coloneqq t$; else $l \coloneqq t$ until $u l < \epsilon$

requires exactly $\lceil \log_2 \left(\frac{u-l}{\epsilon} \right) \rceil$ iterations

Linear program (LP)

minimize
$$c^{\top}x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- ► feasible set is a polyhedron

Examples

Diet problem: choose quantities x_1, \ldots, x_n of n foods

- ightharpoonup one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- $lackbox{ healthy diet requires nutrient i in quantity at least b_i}$

to find cheapest healthy diet,

minimize
$$c^{\top}x$$

subject to $Ax \succeq b, x \succeq 0$

Piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m} (a_i^\top x + b_i)$$

equivalent to LP

minimize
$$t$$

subject to $a_i^{\top} x + b_i \le t, \quad i = 1, \dots, m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^{\top} x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$

$$\sup\{a_i^{\top}(x_c + u) \mid ||u||_2 \le r\} = a_i^{\top}x_c + r||a_i||_2 \le b_i$$

 \blacktriangleright hence, x_c , r can be determined by solving the LP

maximize
$$r$$
 subject to $a_i^{\top} x_c + r ||a_i||_2 \leq b_i, \quad i = 1, \dots, m$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

Linear-fractional program

$$f_0(x) = \frac{c^{\top}x + d}{e^{\top}x + f}, \qquad \text{dom } f_0(x) = \{x \mid e^{\top}x + f > 0\}$$

- ▶ a quasiconvex optimization problem; can be solved by bisection
- ightharpoonup also equivalent to the LP (variables y, z)

minimize
$$c^{\top}y + dz$$

subject to $Gy \leq hz$
 $Ay = bz$
 $e^{\top}y + fz = 1$
 $z \geq 0$

Generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^\top x + d_i}{e_i^\top x + f_i}, \quad \text{dom } f_0(x) = \{x \mid e_i^\top x + f_i > 0, \ i = 1,\dots,r\}$$

a quasiconvex optimization problem; can be solved by bisection

Example: Von Neumann model of a growing economy

maximize (over
$$x, x^+$$
) $\min_{i=1,\dots,n} x_i^+/x_i$
subject to $x^+ \succeq 0, \quad Bx^+ \preceq Ax$

- \triangleright $x, x^+ \in \mathbb{R}^n$: activity levels of n sectors, in current and next period
- $ightharpoonup (Ax)_i, (Bx^+)_i$: produced, respectively, consumed, amounts of good i
- $ightharpoonup x_i^+/x_i$: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$(1/2)x^{\top}Px + q^{\top}x + r$$

subject to $Gx \leq h$
 $Ax = b$

- $ightharpoonup P \in \mathbb{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyheron

Examples

Least squares

minimize
$$||Ax - b||_2^2$$

- ▶ analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- lacktriangle can add linear constraints, e.g., $l \le x \le u$

Linear program with random cost

minimize
$$\bar{c}^{\top}x + \gamma x^{\top}\Sigma x = \mathbb{E}c^{\top}x + \gamma \text{var}(c^{\top}x)$$

subject to $Gx \leq h$
 $Ax = b$

- ightharpoonup c is random vector with mean \bar{c} and covariance Σ
- ▶ hence, $c^{\top}x$ is random variable with mean $\bar{c}^{\top}x$ and variance $x^{\top}\Sigma x$
- $ightharpoonup \gamma > 0$ is risk aversion parameter
- $ightharpoonup \gamma$ controls trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^{\top}P_0x + q_0^{\top}x + r_0$$

subject to $(1/2)x^{\top}P_ix + q_i^{\top}x + r_i \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

- $ightharpoonup P_i \in \mathbb{S}^n_+$; objective and constraints are convex quadratic
- ightharpoonup if $P_1,\ldots,P_m\in\mathbb{S}^n_{++}$, feasible set is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^{\top}x$$

subject to $||A_ix + b_i||_2 \le c_i^{\top}x + d_i$, $i = 1, ..., m$
 $Fx = g$

$$(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$$

▶ inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, \ c_i^{\top} x + d_i) \in \text{ second-order cone in } \mathbb{R}^{n_i + 1}$$

- ▶ for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^{\top}x$$

subject to $a_i^{\top}x \leq b_i, i = 1, ..., m,$

there can be uncertainty in c, a_i, b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

lacktriangle deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^{\top}x$$

subject to $a_i^{\top}x \leq b_i$ for all $a_i \in \mathcal{E}_i, i = 1, \dots, m$

lacktriangle stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^{\top}x$$

subject to $\operatorname{prob}(a_i^{\top}x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

Deterministic approach via SOCP

choose an ellipsoide as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbb{R}^n, \ P_i \in \mathbb{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

SOCP formulation

minimize
$$c^{\top}x$$

subject to $a_i^{\top}x \leq b_i \ \forall a_i \in \mathcal{E}_i, \ i = 1, \dots, m$

this is equivalent to the SOCP

minimize
$$c^{\top}x$$

subject to $\bar{a}_i^{\top}x + \|P_i^{\top}x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^\top x = \bar{a}_i^\top x + \|P_i^\top x\|_2$$
)

Stochastic approach via SOCP

- ightharpoonup assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$: Gaussian with mean \bar{a}_i , covariance Σ_i
- $ightharpoonup a_i^{\top} x$ is Gaussian random variable with mean $\bar{a}_i^{\top} x$, variance $x^{\top} \Sigma_i x$
- ▶ if we denote the CDF of $\mathcal{N}(0,1)$ by $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$,

$$\operatorname{prob}(a_i^{\top} x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^{\top} x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

SOCP formulation of robust LP

minimize
$$c^{\top}x$$

subject to $\operatorname{prob}(a_i^{\top}x < b_i) > n$, $i = 1, \dots, m$

for $\eta \geq 1/2$, this is equivalent to the SOCP

minimize
$$c^{\top}x$$

subject to $\bar{a}_i^{\top}x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i = 1, \dots, m$

Example

$$\operatorname{prob}(a_i^{\top} x \le b_i) \ge \eta, \quad i = 1, \dots, 5$$

feasible set for three values of η

$$\eta = 10\%$$

$$\Phi^{-1}(\eta) < 0$$

$$\eta = 50\%$$

$$\eta = 90\%$$

$$\Phi^{-1}(\eta) > 0$$

Geometric programming

Monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

Posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

Geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1, \quad i = 1, ..., m$
 $h_i(x) = 1, \quad i = 1, ..., p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

ightharpoonup monomial $f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^{\top} y + b \qquad (b = \log c)$$

ightharpoonup posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log(\sum_{k=1}^K e^{a_k^\top y + b_k}) \qquad (\text{with } b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log(\sum_{k=1}^{K} \exp(a_{0k}^{\top} y + b_{0k}))$$
subject to
$$\log(\sum_{k=1}^{K} \exp(a_{ik}^{\top} y + b_{ik})) \leq 0, \quad i = 1, \dots, m$$
$$Gy + d = 0$$

Design of cantilever beam

- ightharpoonup N segments with unit lengths, rectangular cross-sections of size $w_i \times h_i$
- lacktriangle given vertical force F applied at the right end

Design problem

```
minimize total weight subject to upper & lower bounds on w_i,\ h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam
```

variables: w_i , h_i for i = 1, ..., N

Objective and constraint functions

- ▶ total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- lacktriangle aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- lacktriangle maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- \blacktriangleright vertical deflection y_i and slope v_i of central axis at the right end of segment i:

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for $i=N,N-1,\ldots,1$, with $v_{N+1}=y_{N+1}=0$ (E is Young's modulus) v_i and y_i are posynomial functions of $w,\ h$

Formulation as a GP

$$\begin{split} & \text{minimize} & & w_1 h_1 + \dots + w_N h_N \\ & \text{subject to} & & w_{\mathsf{max}}^{-1} w_i \leq 1, \quad w_{\mathsf{min}} w_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & h_{\mathsf{max}}^{-1} h_i \leq 1, \quad h_{\mathsf{min}} h_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & S_{\mathsf{max}}^{-1} w_i^{-1} h_i \leq 1, \quad S_{\mathsf{min}} w_i h_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & 6 i F \sigma_{\mathsf{max}}^{-1} w_i^{-1} h_i^{-2} \leq 1, \quad i = 1, \dots, N \\ & & & y_{\mathsf{max}}^{-1} y_1 \leq 1 \end{split}$$

note

• we write $w_{\min} \leq w_i \leq w_{\max}$ and $h_{\min} \leq h_i \leq h_{\max}$

$$w_{\min}/w_i \le 1$$
, $w_i/w_{\max} \le 1$, $h_{\min}/h_i \le 1$, $h_i/h_{\max} \le 1$

ightharpoonup we write $S_{\min} \leq h_i/w_i \leq S_{\max}$

$$S_{\min} w_i / h_i \le 1, \quad h_i / (w_i S_{\max}) \le 1$$

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{pf}(A)$

- \blacktriangleright exists for (elementwise) positive $A \in \mathbb{R}^{n \times n}$
- \blacktriangleright a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k : $A^k \sim \lambda_{\rm pf}^k$ as $k \to \infty$
- ▶ alternative characterization: $\lambda_{pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v \succ 0\}$

Minimizing spectral radius of matrix of posynomials

- ightharpoonup minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$

subject to $\sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \le 1, \quad i = 1, \dots, n$

variables λ, v, x

Generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

- $ightharpoonup f_0: \mathbb{R}^n \to \mathbb{R}$ is convex
- $lackbox{}{} f_i:\mathbb{R}^n
 ightarrow \mathbb{R}^{k_i}$ is K_i -convex with respect to proper cone K_i :

$$f_i(\theta x + (1 - \theta)y) \leq_{K_i} \theta f_i(x) + (1 - \theta)f_i(y)$$
 for $0 \leq \theta \leq 1$ and $x, y \in \text{dom } f_i$

same properties as standard convex problem (local optimum is global, etc.)

Conic linear program: special case with linear objective and constraints

minimize
$$c^{\top}x$$

subject to $Fx + g \prec_K 0$
 $Ax = b$

extends linear programming $(K = \mathbb{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^{\top}x$$

subject to $x_1F_1 + x_2F_2 + \cdots + x_nF_n + G \leq 0$
 $Ax = b$

with $F_i, G \in \mathbb{S}^k$

- ▶ inequality constraint is called *linear matrix inequality* (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + x_2\hat{F}_2 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + x_2\tilde{F}_2 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize
$$c^{\top}x$$
 SDP: minimize $c^{\top}x$ subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \preceq)

SOCP and equivalent SDP

SOCP: minimize
$$f^{\top}x$$

subject to $\|A_ix + b_i\|_2 \le c_i^{\top}x + d_i$, $i = 1, ..., m$

SDP: minimize
$$f^{\top}x$$

subject to
$$\begin{bmatrix} (c_i^{\top}x + d_i)I & A_ix + b_i \\ (A_ix + b_i)^{\top} & c_i^{\top}x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, m$$

Eigenvalue minimization

minimize
$$\lambda_{\mathsf{max}}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbb{S}^k$)

Equivalent SDP

minimize
$$t$$

subject to $A(x) \leq tI$

- ightharpoonup variables $x \in \mathbb{R}^n, \ t \in \mathbb{R}$
- equivalence follows from

$$\lambda_{\mathsf{max}}(A) \le t \iff A \le tI$$

Matrix norm minimization

$$\begin{aligned} & \text{minimize} \quad \|A(x)\|_2 = \left(\lambda_{\text{max}}(A(x))^\top (A(x))\right)^{1/2} \\ & \text{where } A(x) = A_0(x) + x_1 A_1(x) + \dots + x_n A_n(x) \text{ (with given } A_i \in \mathbb{R}^{p \times q} \text{)} \end{aligned}$$

Equivalent SDP

minimize
$$t$$
 subject to $\begin{bmatrix} tI & A(x) \\ A(x)^{\top} & tI \end{bmatrix} \succeq 0$

- ightharpoonup variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$
- constraint follows from

$$||A||_2 \le t \iff A^\top A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^\top & tI \end{bmatrix} \le 0$$

Vector optimization

General vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

vector objective $f_0: \mathbb{R}^n \to \mathbb{R}^q$, minimized with respect to proper cone $K \in \mathbb{R}^q$

Convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

with f_0 K-convex, f_1, \ldots, f_m convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of \mathcal{O}
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimum value of \mathcal{O}

 x^{\star} is optimal

 x^{po} is Pareto optimal

Multicriterion optimization

vector optimization problem with $K = \mathbb{R}^q_+$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- ightharpoonup q different objectives F_i ; roughly speaking we want all F_i 's to be small
- ightharpoonup feasible x^* is optimal if

$$y \text{ feasible} \implies f_0(x^\star) \preceq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

ightharpoonup feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{po}) \implies f_0(x^{po}) \leq f_0(y)$

if Pareto optimal values are not unique, there is a trade-off between objectives

▶ f_0 is K-convex if F_1, \ldots, F_q are convex (in the usual sense)

Regularized least-squares

minimize (w.r.t.
$$\mathbb{R}^2_+$$
) $(\|Ax - b\|_2^2, \|x\|_2^2)$

example for $A \in \mathbb{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbb{R}^2_+$$
) $(-\bar{p}^\top x, x^\top \Sigma x)$
subject to $\mathbf{1}^\top x = 1, \quad x \succeq 0$

- $ightharpoonup x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- ightharpoonup return is $r=p^{\top}x$ where $p\in\mathbb{R}^n$ is vector of relative asset price changes
- ightharpoonup p is modeled as a random variable with mean \bar{p} , covariance Σ
- $ightharpoonup ar{p}^{ op}x = \mathbb{E}r$ is expected return; $x^{ op}\Sigma x = \mathrm{var}\ r$ is return variance (risk)

Example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^{\top} f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

ightharpoonup solutions x of scalar problem are Pareto-optimal for vector optimization problem

$$x \text{ not Pareto-optimal} \\ \Downarrow \\ \exists \text{ feasible } y: f_0(y) \preceq_K f_0(x), \ f_0(y) \neq f_0(x) \\ \Downarrow \\ \lambda^\top f_0(y) < \lambda^\top f_0(x) \text{ for } \lambda \succ_{K^*} 0$$

▶ partial converse for convex vector optimization problem (see later): can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^{\top} f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

regularized least squares problem

take
$$\lambda=(1,\gamma)$$
 with $\gamma>0$
$$\text{minimize}\quad \|Ax-b\|_2^2+\gamma\|x\|_2^2$$
 for fixed γ , a LS problem

risk-return trade-off: with $\gamma > 0$,

$$\begin{aligned} & \text{minimize} & & -\bar{p}^\top x + \gamma x^\top \Sigma x \\ & \text{subject to} & & \mathbf{1}^\top x = 1, & x \succeq 0 \end{aligned}$$