CSED700H: Convex Optimization
 Convex optimization problems ${ }^{1}$

Namhoon Lee
POSTECH
Fall 2023

[^0]
Contents

- standard form (convex) optimization problem
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- semidefinite programming
- vector optimization

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbb{R}^{n}$ is the optimization variable
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective or cost function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1, \ldots, m$ are the inequality constraint functions
- $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1, \ldots, p$ are the equality constraint functions

Optimal value

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if the problem is infeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$ if the problem is unbounded below

Optimal and locally optimal points

- x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies the constraints
- a feasible x is optimal if $f_{0}(x)=p^{\star}$
- x is locally optimal if there is an $R>0$ such that x is optimal for

$$
\begin{array}{lll}
\operatorname{minimize}(\text { over } z) & f_{0}(z) & \\
\text { subject to } & f_{i}(z) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(z)=0, \quad i=1, \ldots, p \\
& \|z-x\|_{2} \leq R &
\end{array}
$$

Examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x$ with $\operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x$ with $\operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=-\infty$
- $f_{0}(x)=x \log x$ with $\operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x: p^{\star}=-\infty$, local optimum at $x=1$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i},
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints ($m=p=0$)
- the distinction will be important when we discuss duality

Example

$$
\operatorname{minimize} \quad f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{\top} x\right)
$$

this is an unconstrained problem with implicit constraints $a_{i}^{\top} x<b_{i}$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible
this formulation is not meant as a practical method for solving feasibility problems

Convex optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{\top} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex functions
- equality constraints are linear
- often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- important property: feasible set of a convex optimization problem is convex

Example

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex
- feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition): f_{1} not convex, h_{1} not affine
- the problem is equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any local optimal point of a convex problem is (globally) optimal

- suppose x is locally optimal: there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

- suppose if x is not globally optimal: there exists a feasible y with $f_{0}(y)<f_{0}(x)$
- convex combinations of x and y are feasible
- cost function at convex combination of x and y with $0<\theta \leq 1$ satisfies

$$
\begin{aligned}
f_{0}((1-\theta) x+\theta y) & \leq(1-\theta) f_{0}(x)+\theta f_{0}(y) \\
& \leq(1-\theta) f_{0}(x)+\theta f_{0}(x) \\
& =f_{0}(x)
\end{aligned}
$$

- for $0<\theta \leq R /\|y-x\|_{2}$ this contradicts the assumption of local optimality of x

Optimality criterion for differentiable f_{0}

x is optimal if and only if it is feasible and

$$
\nabla f_{0}(x)^{\top}(y-x) \geq 0 \quad \text { for all feasible } y
$$

if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Proof (necessity)

- consider feasible $y \neq x$ and define line segment $I=\{x+t(y-x) \mid 0 \leq t \leq 1\}$
- by convexity of X, points in I are feasible
- let $g(t)=f_{0}(x+t(y-x))$ be the restriction of f_{0} to I
- derivative at t is $g^{\prime}(t)=\nabla f_{0}(x+t(y-x))^{\top}(y-x)$, so

$$
g^{\prime}(0)=\nabla f_{0}(x)^{\top}(y-x)
$$

- if $g^{\prime}(0)=\nabla f_{0}(x)^{\top}(y-x)<0$, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and $\nabla f_{0}(x)^{\top}(y-x) \geq 0$, then, by convexity of f_{0},

$$
\begin{aligned}
f_{0}(y) & \geq f_{0}(x)+\nabla f_{0}(x)^{\top}(y-x) \\
& \geq f_{0}(x)
\end{aligned}
$$

Examples

Unconstrained problem: x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(x)=0
$$

(recall our assumption that $\operatorname{dom} f_{0}$ is an open set if f_{0} is differentiable)

Minimization over nonnegative orthant

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & x \succeq 0
\end{array}
$$

x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad x \succeq 0, \quad \begin{cases}\nabla f_{0}(x)_{i} \geq 0 & x_{i}=0 \\ \nabla f_{0}(x)_{i}=0 & x_{i}>0\end{cases}
$$

Equality constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x=b
\end{array}
$$

x is optimal if and only if there exists a ν such that

$$
x \in \operatorname{dom} f_{0}, \quad A x=b, \quad \nabla f_{0}(x)+A^{\top} \nu=0
$$

- first two conditions are feasibility of x
- gradient $\nabla f_{0}(x)$ can always be decomposed as $\nabla f_{0}(x)+A^{\top} \nu=w$ with $A w=0$
- if $w=0$, the optimality condition holds:

$$
\nabla f_{0}(x)^{\top}(y-x)=-\nu^{\top} A(y-x)=0 \quad \text { for all } y \text { with } A y=b
$$

- if $w \neq 0$, condition does not hold: $y=x-t w$ is feasible for small $t>0$,

$$
\nabla f_{0}(x)^{\top}(y-x)=-t\left(w-A^{\top} \nu\right)^{\top} w=-t\|w\|_{2}^{2}<0
$$

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa

Eliminating equality constraints

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(x) & \text { minimize } & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m & \text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- x_{0} is any solution of $A x_{0}=b$ and the columns of F span the nullspace of A
- variables in second problem are z

Introducing equality constraints

minimize	$f_{0}\left(A_{0} x+b_{0}\right)$
subject to	$f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m$

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \\
& y_{i}=A_{i} x+b_{i}, \quad i=1, \ldots, m \\
\end{array}
$$

variables in second problem are $x, y_{0}, y_{1}, \ldots, y_{m}$

Equivalent convex problems

Epigraph form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

minimize $\quad t$
subject to $\quad f_{0}(x)-t \leq 0$

$$
f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

$$
A x=b
$$

variables in second problem are x, t
Minimizing over some variables

```
minimize }\quad\mp@subsup{f}{0}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}
subject to }\quad\mp@subsup{f}{i}{}(\mp@subsup{x}{1}{})\leq0,\quadi=1,\ldots,
```

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$
minimize $\quad \tilde{f}_{0}\left(x_{1}\right)$
subject to $\quad f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m$

Quasiconvex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- f_{0} is quasiconvex
- f_{1}, \ldots, f_{m} are convex
can have locally optimal points that are not (globally) optimal

Convex representation of sublevel sets of f_{0}

if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(x)$ is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
f_{0}(x) \leq t \quad \Longleftrightarrow \quad \phi_{t}(x) \leq 0
$$

Example

$$
f_{0}(x)=\frac{p(x)}{q(x)}
$$

with p convex, q concave, and $p(x) \geq 0, q(x)>0$ on $\operatorname{dom} f_{0}$
can take $\phi_{t}(x)=p(x)-t q(x)$:

- for $t \geq 0, \phi_{t}$ convex in x
- $p(x) / g(x) \leq t$ if and only if $\phi_{t}(x) \leq 0$

Quasiconvex optimization via convex feasibility problems

$$
\begin{equation*}
\phi_{t}(x) \leq 0, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method

$$
\begin{aligned}
& \text { given: } l \leq p^{\star}, u \geq p^{\star} \text {, tolerance } \epsilon>0 \\
& \text { repeat } \\
& \text { 1. } t:=(l+u) / 2 \\
& \text { 2. solve the convex feasibility problem (1) } \\
& \text { 3. if (1) is feasible, } u:=t \text {; else } l:=t \\
& \text { until } u-l \leq \epsilon
\end{aligned}
$$

requires exactly $\left\lceil\log _{2}\left(\frac{u-l}{\epsilon}\right)\right\rceil$ iterations

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

Diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \succeq b, \quad x \succeq 0
\end{array}
$$

Piecewise-linear minimization

$$
\operatorname{minimize} \max _{i=1, \ldots, m}\left(a_{i}^{\top} x+b_{i}\right)
$$

equivalent to LP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{\top} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

Chebyshev center of a polyhedron

Chebyshev center of

$$
\mathcal{P}=\left\{x \mid a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m\right\}
$$

is center of largest inscribed ball

$$
\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}
$$

- $a_{i}^{\top} x \leq b_{i}$ for all $x \in \mathcal{B}$ if and only if

$$
\sup \left\{a_{i}^{\top}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\}=a_{i}^{\top} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

- hence, x_{c}, r can be determined by solving the LP

$$
\begin{array}{ll}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{\top} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

Linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

Linear-fractional program

$$
f_{0}(x)=\frac{c^{\top} x+d}{e^{\top} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{\top} x+f>0\right\}
$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} y+d z \\
\text { subject to } & G y \preceq h z \\
& A y=b z \\
& e^{\top} y+f z=1 \\
& z \geq 0
\end{array}
$$

Generalized linear-fractional program

$$
f_{0}(x)=\max _{i=1, \ldots, r} \frac{c_{i}^{\top} x+d_{i}}{e_{i}^{\top} x+f_{i}}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e_{i}^{\top} x+f_{i}>0, i=1, \ldots, r\right\}
$$

a quasiconvex optimization problem; can be solved by bisection
Example: Von Neumann model of a growing economy

$$
\begin{array}{ll}
\operatorname{maximize}\left(\text { over } x, x^{+}\right) & \min _{i=1, \ldots, n} x_{i}^{+} / x_{i} \\
\text { subject to } & x^{+} \succeq 0, \quad B x^{+} \preceq A x
\end{array}
$$

- $x, x^{+} \in \mathbb{R}^{n}$: activity levels of n sectors, in current and next period
- $(A x)_{i},\left(B x^{+}\right)_{i}$: produced, respectively, consumed, amounts of good i
- x_{i}^{+} / x_{i} : growth rate of sector i
allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{\top} P x+q^{\top} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbb{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyheron

Examples

Least squares

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

Linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{\top} x+\gamma x^{\top} \Sigma x=\mathbb{E} c^{\top} x+\gamma \operatorname{var}\left(c^{\top} x\right) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{\top} x$ is random variable with mean $\bar{c}^{\top} x$ and variance $x^{\top} \Sigma x$
- $\gamma>0$ is risk aversion parameter
- γ controls trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{\top} P_{0} x+q_{0}^{\top} x+r_{0} \\
\text { subject to } & (1 / 2) x^{\top} P_{i} x+q_{i}^{\top} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $P_{i} \in \mathbb{S}_{+}^{n}$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \in \mathbb{S}_{++}^{n}$, feasible set is intersection of m ellipsoids and an affine set

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{\top} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{\top} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

$\left(A_{i} \in \mathbb{R}^{n_{i} \times n}, F \in \mathbb{R}^{p \times n}\right)$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(A_{i} x+b_{i}, c_{i}^{\top} x+d_{i}\right) \in \text { second-order cone in } \mathbb{R}^{n_{i}+1}
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a_{i}^{\top} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

there can be uncertainty in c, a_{i}, b_{i}
two common approaches to handling uncertainty (in a_{i}, for simplicity)

- deterministic model: constraints must hold for all $a_{i} \in \mathcal{E}_{i}$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a_{i}^{\top} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- stochastic model: a_{i} is random variable; constraints must hold with probability η

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{\top} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

Deterministic approach via SOCP

choose an ellipsoide as \mathcal{E}_{i} :

$$
\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} \quad\left(\bar{a}_{i} \in \mathbb{R}^{n}, P_{i} \in \mathbb{R}^{n \times n}\right)
$$

center is \bar{a}_{i}, semi-axes determined by singular values $/$ vectors of P_{i}

SOCP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a_{i}^{\top} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

this is equivalent to the SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & \bar{a}_{i}^{\top} x+\left\|P_{i}^{\top} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(follows from $\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{\top} x=\bar{a}_{i}^{\top} x+\left\|P_{i}^{\top} x\right\|_{2}$)

Stochastic approach via SOCP

- assume $a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right)$: Gaussian with mean \bar{a}_{i}, covariance Σ_{i}
- $a_{i}^{\top} x$ is Gaussian random variable with mean $\bar{a}_{i}^{\top} x$, variance $x^{\top} \Sigma_{i} x$
- if we denote the CDF of $\mathcal{N}(0,1)$ by $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$,

$$
\operatorname{prob}\left(a_{i}^{\top} x \leq b_{i}\right)=\Phi\left(\frac{b_{i}-\bar{a}_{i}^{\top} x}{\left\|\Sigma_{i}^{1 / 2} x\right\|_{2}}\right)
$$

SOCP formulation of robust LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{\top} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

for $\eta \geq 1 / 2$, this is equivalent to the SOCP
minimize $c^{\top} x$
subject to $\quad \bar{a}_{i}^{\top} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m$

Example

$$
\operatorname{prob}\left(a_{i}^{\top} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, 5
$$

feasible set for three values of η

$$
\begin{array}{r}
\eta=50 \% \\
\Phi^{-1}(\eta)=0
\end{array}
$$

$$
\begin{array}{r}
\eta=90 \% \\
\Phi^{-1}(\eta)>0
\end{array}
$$

Geometric programming

Monomial function

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad \operatorname{dom} f=\mathbb{R}_{++}^{n}
$$

with $c>0$; exponent a_{i} can be any real number
Posynomial function: sum of monomials

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \quad \operatorname{dom} f=\mathbb{R}_{++}^{n}
$$

Geometric program (GP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& h_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

with f_{i} posynomial, h_{i} monomial

Geometric program in convex form

change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints

- monomial $f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=a^{\top} y+b \quad(b=\log c)
$$

- posynomial $f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}$ transforms to

$$
\left.\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{a_{k}^{\top} y+b_{k}}\right) \quad \text { (with } b_{k}=\log c_{k}\right)
$$

- geometric program transforms to convex problem

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{k=1}^{K} \exp \left(a_{0 k}^{\top} y+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{K} \exp \left(a_{i k}^{\top} y+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m \\
& G y+d=0
\end{array}
$$

Design of cantilever beam

- N segments with unit lengths, rectangular cross-sections of size $w_{i} \times h_{i}$
- given vertical force F applied at the right end

Design problem

minimize total weight
subject to upper \& lower bounds on w_{i}, h_{i}
upper bound \& lower bounds on aspect ratios h_{i} / w_{i}
upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam
variables: w_{i}, h_{i} for $i=1, \ldots, N$

Objective and constraint functions

- total weight $w_{1} h_{1}+\cdots+w_{N} h_{N}$ is posynomial
- aspect ratio h_{i} / w_{i} and inverse aspect ratio w_{i} / h_{i} are monomials
- maximum stress in segment i is given by $6 i F /\left(w_{i} h_{i}^{2}\right)$, a monomial
- vertical deflection y_{i} and slope v_{i} of central axis at the right end of segment i :

$$
\begin{aligned}
v_{i} & =12(i-1 / 2) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1} \\
y_{i} & =6(i-1 / 3) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1}+y_{i+1}
\end{aligned}
$$

for $i=N, N-1, \ldots, 1$, with $v_{N+1}=y_{N+1}=0$ (E is Young's modulus) v_{i} and y_{i} are posynomial functions of w, h

Formulation as a GP

$$
\begin{array}{ll}
\operatorname{minimize} & w_{1} h_{1}+\cdots+w_{N} h_{N} \\
\text { subject to } & w_{\max }^{-1} w_{i} \leq 1, \quad w_{\min } w_{i}^{-1} \leq 1, \quad i=1, \ldots, N \\
& h_{\max }^{-1} h_{i} \leq 1, \quad h_{\min } h_{i}^{-1} \leq 1, \quad i=1, \ldots, N \\
& S_{\max }^{-1} w_{i}^{-1} h_{i} \leq 1, \quad S_{\min } w_{i} h_{i}^{-1} \leq 1, \quad i=1, \ldots, N \\
& 6 i F \sigma_{\max }^{-1} w_{i}^{-1} h_{i}^{-2} \leq 1, \quad i=1, \ldots, N \\
& y_{\max }^{-1} y_{1} \leq 1
\end{array}
$$

note

- we write $w_{\text {min }} \leq w_{i} \leq w_{\text {max }}$ and $h_{\text {min }} \leq h_{i} \leq h_{\text {max }}$

$$
w_{\min } / w_{i} \leq 1, \quad w_{i} / w_{\max } \leq 1, \quad h_{\min } / h_{i} \leq 1, \quad h_{i} / h_{\max } \leq 1
$$

- we write $S_{\text {min }} \leq h_{i} / w_{i} \leq S_{\text {max }}$

$$
S_{\min } w_{i} / h_{i} \leq 1, \quad h_{i} /\left(w_{i} S_{\max }\right) \leq 1
$$

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{\text {pf }}(A)$

- exists for (elementwise) positive $A \in \mathbb{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max _{i}\left|\lambda_{i}(A)\right|$
- determines asymptotic growth (decay) rate of $A^{k}: A^{k} \sim \lambda_{\mathrm{pf}}^{k}$ as $k \rightarrow \infty$
- alternative characterization: $\lambda_{\mathrm{pf}}(A)=\inf \{\lambda \mid A v \preceq \lambda v$ for some $v \succ 0\}$

Minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{\mathrm{pf}}(A(x))$, where the elements $A(x)_{i j}$ are posynomials of x
- equivalent geometric program:

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda \\
\text { subject to } & \sum_{j=1}^{n} A(x)_{i j} v_{j} /\left(\lambda v_{i}\right) \leq 1, \quad i=1, \ldots, n
\end{array}
$$

variables λ, v, x

Generalized inequality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}}$ is K_{i}-convex with respect to proper cone K_{i} :

$$
f_{i}(\theta x+(1-\theta) y) \preceq_{K_{i}} \theta f_{i}(x)+(1-\theta) f_{i}(y) \quad \text { for } 0 \leq \theta \leq 1 \text { and } x, y \in \operatorname{dom} f_{i}
$$

- same properties as standard convex problem (local optimum is global, etc.)

Conic linear program: special case with linear objective and constraints

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & F x+g \prec_{K} 0 \\
& A x=b
\end{array}
$$

extends linear programming $\left(K=\mathbb{R}_{+}^{m}\right)$ to nonpolyhedral cones

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \preceq 0 \\
& A x=b
\end{array}
$$

with $F_{i}, G \in \mathbb{S}^{k}$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+x_{2} \hat{F}_{2}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \preceq 0, \quad x_{1} \tilde{F}_{1}+x_{2} \tilde{F}_{2}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \preceq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \preceq 0
$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^{\top} x \quad$ SDP: minimize $c^{\top} x$ subject to $A x \preceq b$
(note different interpretation of generalized inequality \preceq)
SOCP and equivalent SDP
SOCP: minimize $f^{\top} x$
subject to $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{\top} x+d_{i}, \quad i=1, \ldots, m$

SDP : minimize $f^{\top} x$
subject to $\left[\begin{array}{ll}\left(c_{i}^{\top} x+d_{i}\right) I & A_{i} x+b_{i} \\ \left(A_{i} x+b_{i}\right)^{\top} & c_{i}^{\top} x+d_{i}\end{array}\right] \succeq 0, \quad i=1, \ldots, m$

Eigenvalue minimization

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots x_{n} A_{n}$ (with given $\left.A_{i} \in \mathbb{S}^{k}\right)$

Equivalent SDP

```
minimize t
subject to }A(x)\preceqt
```

- variables $x \in \mathbb{R}^{n}, t \in \mathbb{R}$
- equivalence follows from

$$
\lambda_{\max }(A) \leq t \quad \Longleftrightarrow \quad A \preceq t I
$$

Matrix norm minimization

$$
\operatorname{minimize} \quad\|A(x)\|_{2}=\left(\lambda_{\max }(A(x))^{\top}(A(x))\right)^{1 / 2}
$$

where $A(x)=A_{0}(x)+x_{1} A_{1}(x)+\cdots+x_{n} A_{n}(x)$ (with given $A_{i} \in \mathbb{R}^{p \times q}$)

Equivalent SDP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & {\left[\begin{array}{cc}
t I & A(x) \\
A(x)^{\top} & t I
\end{array}\right] \succeq 0}
\end{array}
$$

- variables $x \in \mathbb{R}^{n}, t \in \mathbb{R}$
- constraint follows from

$$
\begin{aligned}
\|A\|_{2} \leq t & \Longleftrightarrow A^{\top} A \preceq t^{2} I, \quad t \geq 0 \\
& \Longleftrightarrow \quad\left[\begin{array}{cc}
t I & A \\
A^{\top} & t I
\end{array}\right] \preceq 0
\end{aligned}
$$

Vector optimization

General vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

vector objective $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$, minimized with respect to proper cone $K \in \mathbb{R}^{q}$

Convex vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0} K$-convex, f_{1}, \ldots, f_{m} convex

Optimal and Pareto optimal points

set of achievable objective values

$$
\mathcal{O}=\left\{f_{0}(x) \mid x \text { feasible }\right\}
$$

- feasible x is optimal if $f_{0}(x)$ is the minimum value of \mathcal{O}
- feasible x is Pareto optimal if $f_{0}(x)$ is a minimum value of \mathcal{O}

Multicriterion optimization

vector optimization problem with $K=\mathbb{R}_{+}^{q}$

$$
f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

- q different objectives F_{i}; roughly speaking we want all F_{i} 's to be small
- feasible x^{\star} is optimal if

$$
y \text { feasible } \quad \Longrightarrow \quad f_{0}\left(x^{\star}\right) \preceq f_{0}(y)
$$

if there exists an optimal point, the objectives are noncompeting

- feasible x^{po} is Pareto optimal if

$$
y \text { feasible, } \quad f_{0}(y) \preceq f_{0}\left(x^{\mathrm{po}}\right) \quad \Longrightarrow \quad f_{0}\left(x^{\mathrm{po}}\right) \preceq f_{0}(y)
$$

if Pareto optimal values are not unique, there is a trade-off between objectives

- f_{0} is K-convex if F_{1}, \ldots, F_{q} are convex (in the usual sense)

Regularized least-squares

$$
\operatorname{minimize}\left(\text { w.r.t. } \mathbb{R}_{+}^{2}\right) \quad\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right)
$$

example for $A \in \mathbb{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbb{R}_{+}^{2}\right) & \left(-\bar{p}^{\top} x, x^{\top} \Sigma x\right) \\
\text { subject to } & \mathbf{1}^{\top} x=1, \quad x \succeq 0
\end{array}
$$

- $x \in \mathbb{R}^{n}$ is investment portfolio; x_{i} is fraction invested in asset i
- return is $r=p^{\top} x$ where $p \in \mathbb{R}^{n}$ is vector of relative asset price changes
- p is modeled as a random variable with mean \bar{p}, covariance Σ
- $\bar{p}^{\top} x=\mathbb{E} r$ is expected return; $x^{\top} \Sigma x=\operatorname{var} r$ is return variance (risk)

Example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^{*}} 0$ and solve scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{\top} f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- solutions x of scalar problem are Pareto-optimal for vector optimization problem

\exists feasible $y: f_{0}(y) \preceq_{K} f_{0}(x), f_{0}(y) \neq f_{0}(x)$
\Downarrow

$$
\lambda^{\top} f_{0}(y)<\lambda^{\top} f_{0}(x) \text { for } \lambda \succ_{K^{*}} 0
$$

- partial converse for convex vector optimization problem (see later): can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^{*}} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$
\lambda^{\top} f_{0}(x)=\lambda_{1} F_{1}(x)+\cdots+\lambda_{q} F_{q}(x)
$$

- regularized least squares problem

$$
\text { take } \lambda=(1, \gamma) \text { with } \gamma>0
$$

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

for fixed γ, a LS problem

- risk-return trade-off: with $\gamma>0$,

$$
\begin{array}{ll}
\operatorname{minimize} & -\bar{p}^{\top} x+\gamma x^{\top} \Sigma x \\
\text { subject to } & \mathbf{1}^{\top} x=1, \quad x \succeq 0
\end{array}
$$

[^0]: ${ }^{1}$ slides credits to Prof. Lieven Vandenberghe

