CSED700H: Convex Optimization Convex sets¹

Namhoon Lee

POSTECH

Fall 2023

¹slides credits to Prof. Lieven Vandenberghe

Contents

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- dual cones
- separating and supporting hyperplanes

Affine set

Line through points x_1, x_2 : all points

 $x = \theta x_1 + (1 - \theta) x_2$ with $\theta \in \mathbb{R}$

Affine set: contains the line through any two distinct points in the set

Example: solution set of linear equations $\{x \mid Ax = b\}$ conversely, every affine set can be expressed as solution set of linear equations

Convex set

Line segment between points x1, x2: all points

$$x = \theta x_1 + (1 - \theta) x_2$$
 with $0 \le \theta \le 1$

Convex set: contains line segment between any two points in the set

$$x1, x2 \in \mathbb{C}, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1-\theta)x_2 \in \mathbb{C}$$

Examples (one convex, two nonconvex sets)

Convex combination and convex hull

Convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $heta_1 + \dots + heta_k = 1$, $heta_i \geq 0$

Convex hull: $\operatorname{conv} \mathbb{S}$ is set of all convex combinations of points in \mathbb{S}

Convex cone

Conic (nonnegative) combination of points x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$ with $\theta_1 \ge 0, \theta_2 \ge 0$

Convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

Hyperplane: set of the form $\{x \mid a^{\top}x = b\}$ where $a \neq 0$ x_0 is a particular element, *e.g.*,

Halfspace: set of the form $\{x \mid a^{\top}x \leq b\}$ where $a \neq 0$

hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c|| \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

 $\|\cdot\|_2$ denotes the Euclidean norm

Ellipsoid: set of the form

$$\{x \mid (x - x_c)^\top P^{-1}(x - x_c) \le 1\}$$

with \boldsymbol{P} symmetric positive definite

other representation: $\{x_c + Au \mid ||u||_2 \leq 1\}$ with A square and nonsingular

Principal axes

$$\mathcal{E} = \{ x \mid (x - x_c)^\top P^{-1} (x - x_c) \le 1 \}$$

Eigendecomposition: $P = Q\Lambda Q^{\top} = \sum_{i=1}^{n} \lambda_i q_i q_i^{\top}$

- Q is orthogonal $(Q^{\top} = Q^{-1})$ with columns q_i
- ▶ Λ is diagonal with diagonal elements $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$

Change of variables: $y = Q^{\top}(x - x_c), x = x_c + Qy$

after the change of variables the ellipsoid is described by

$$y^{\top} \Lambda^{-1} y = y_1^2 / \lambda_1 + \dots + y_n^2 / \lambda_n \le 1$$

an ellipsoid centered at the origin, and aligned with the coordinate axes eigenvectors q_i of P give the principal axes of \mathcal{E}

▶ the width of $\mathcal E$ along the principal axis determined by q_i is $2\sqrt{\lambda_i}$

Example in \mathbb{R}^2

Exercise: give an interpretation of tr(P) as a measure of the size of

$$\mathcal{E} = \{x \mid (x - x_c)^\top P^{-1} (x - x_c) \le 1\}$$

Norms

Norm: a function $\|\cdot\|$ that satisfies

$$||x|| \ge 0 \text{ for all } x$$

•
$$||x|| = 0$$
 if and only if $x = 0$

$$\blacktriangleright ||tx|| = |t|||x|| \text{ for } t \in \mathbb{R}$$

$$||x + y|| \le ||x|| + ||y||$$

Notation

- ▶ $\|\cdot\|$ is a general (unspecified) norm
- ▶ $\| \cdot \|_{symb}$ is a particular norm

Frequently used norms

Vector norm $(x \in \mathbb{R}^n)$

• Euclidean norm
$$||x||_2 = (x_1^2 + \dots + x_n^2)^{1/2}$$

▶ p-norm ($p \ge 1$) and ∞ -norm (Chebyshev norm)

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}, \qquad ||x||_{\infty} = \max_{k=1,\dots,n} |x_k|$$

• quadratic norm: $||x||_A = (x^{\top}Ax)^{1/2}$, with A symmetric positive definite

Matrix norms ($X \in \mathbb{R}^{m \times n}$)

• Frobenius norm: $||X||_F = (\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2)^{1/2}$

▶ 2-norm (spectral norm, operator norm)

$$\|X\|_2 = \sup_{y \neq 0} \frac{\|Xy\|_2}{\|y\|_2} = \sigma_{\max}(X)$$

$$\sigma_{\max}(X) = (\lambda_{\max}(X^\top X))^{1/2}$$
 is largest singular value of X

Norm balls and norm cones

Norm ball with center x_c and radius r:

$$\{x \mid \|x - x_c\| \le r\}$$

norm balls are convex

Norm cone:

$$\{(x,t) \mid ||x|| \le t\}$$

norm cones are convex

example: second order cone (norm cone for Euclidean norm)

Polyhedra

Polyhedron: solution set of *finitely many* linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 \preceq denotes componentwise inequality between vectors

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

Notation

 \blacktriangleright \mathbb{S}^n is set of symmetric $n \times n$ matrices

▶ $\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid X \succeq 0 \}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \quad \Longleftrightarrow \quad z^\top X z \ge 0 \text{ for all } z$$

 \mathbb{S}^n_+ is a convex cone $\mathbb{S}^n_{++} = \{X \in \mathbb{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

Example

$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+$$

Operations that preserve convexity

methods for establishing convexity of a set $\ensuremath{\mathbb{C}}$

1. apply definition

$$x_1, x_2 \in \mathbb{C}, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in \mathbb{C}$$

- 2. show that \mathbb{C} is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

Example

$$\mathbb{S} = \{ x \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m = 2:

Affine function

suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function:

$$f(x) = Ax + b$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

 \blacktriangleright the image of a convex set under f is convex

 $\mathbb{S} \subseteq \mathbb{R}^n \text{ convex} \qquad \Longrightarrow \qquad f(\mathbb{S}) = \{Ax + b \mid x \in \mathbb{C}\} \quad \text{is convex}$

• the inverse image $f^{-1}(\mathbb{C})$ of a convex set under f is convex

$$\mathbb{C} \subseteq \mathbb{R}^m \text{ convex} \qquad \Longrightarrow \qquad f^{-1}(\mathbb{C}) = \{ x \in \mathbb{R}^m \mid Ax + b \in \mathbb{C} \} \quad \text{is convex}$$

Examples

scaling, translation, projection

▶ image and inverse image of norm ball under affine transformation

$$\{Ax + b \mid ||x|| \le 1\}, \qquad \{x \mid ||Ax + b|| \le 1\}$$

hyperbolic cone

$$\{x \mid x^{\top} P x \le (c^{\top} x)^2, \ c^{\top} x \ge 0\}, \qquad \text{with } P \in \mathbb{S}^n_+$$

solution set of linear matrix inequality

$$\{x \mid x_1A_1 + \dots + x_mA_m \preceq B\}, \quad \text{with } A_i, B \in \mathbb{S}^p$$

Perspective and linear-fractional function

Perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax+b}{c^{\top}x+d}, \qquad \text{dom} \ f = \{x \mid c^{\top}x+d > 0\}$$

image and inverse image of convex sets under linear-fractional function are convex

Example

a linear-fractional function from \mathbb{R}^2 to \mathbb{R}^2

$$f(x) = \frac{1}{x_1 + x_2 + 1}x, \qquad \text{dom}\, f = \{(x_1, x_2) \mid x_1 + x_2 + 1 > 0\}$$

Proper cone

Proper cone: a convex cone $\mathbb{K} \in \mathbb{R}^n$ that satisifes three properties

- ▶ K is closed (contains its boundary)
- ▶ K is solid (has nonempty interior)
- ▶ K is pointed (contains no line)

Examples

nonnegative orthant

$$\mathbb{K} = \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n \mid x_i \ge 0, \ i = 1, \dots, n \}$$

▶ positive semidefinite cone $\mathbb{K} = \mathbb{S}^n_+$

• nonnegative polynomials on [0, 1]:

$$\mathbb{K} = \{ x \in \mathbb{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

Generalized inequality

Generalized inequality defined by a proper cone \mathbb{K} :

$$x \preceq_{\mathbb{K}} y \iff y - x \in \mathbb{K}, \qquad x \prec_{\mathbb{K}} y \iff y - x \in \operatorname{int} \mathbb{K}$$

Examples

• componentwise inequality $(\mathbb{K} = \mathbb{R}^n_+)$

$$x \preceq_{\mathbb{R}^n_+} y \iff x_i \le y_i, \quad i = 1, \dots, n$$

• matrix inequality $(\mathbb{K} = \mathbb{S}^n_+)$

 $X \preceq_{\mathbb{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$

these two types are so common that we drop the subscript in $\preceq_{\mathbb{K}}$

Properties: many properties of $\leq \mathbb{K}$ are similar to \leq on \mathbb{R} , *e.g.*,

$$x \preceq_{\mathbb{K}} y, \quad u \preceq_{\mathbb{K}} v \implies x+u \preceq_{\mathbb{K}} y+v$$

Minimum and minimal elements

 $\preceq_{\mathbb{K}}$ is not in general a *linear ordering*: we can have $x \not\preceq_{\mathbb{K}} y$ and $y \not\preceq_{\mathbb{K}} x$

 $x\in\mathbb{S}$ is the minimum element of \mathbb{S} with respect to $\prec_{\mathbb{K}}$ if

$$y \in \mathbb{S} \implies x \preceq_{\mathbb{K}} y$$

 $x \in \mathbb{S}$ is the minimal element of \mathbb{S} with respect to $\prec_{\mathbb{K}}$ if

$$y \in \mathbb{S}, \quad y \preceq_{\mathbb{K}} x \implies y = x$$

Example $(\mathbb{K} = \mathbb{R}^2_+)$ x_1 is the minimum element of \mathbb{S}_1 x_2 is the minimum element of \mathbb{S}_2

Inner products

in this course we will use the following standard inner products

• for vectors
$$x, y \in \mathbb{R}^n$$
:

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n = x^\top y$$

• for matrices $X, Y \in \mathbb{R}^{m \times n}$:

$$\langle X, Y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij} = \operatorname{tr}(X^{\top}Y)$$

▶ for symmetric matrices $X, Y \in \mathbb{S}^n$:

$$\langle X, Y \rangle = \sum_{i=1}^{n} X_{ii} Y_{ii} + 2 \sum_{i>j} X_{ij} Y_{ij} = \operatorname{tr}(XY)$$

Dual cones

Dual cone of a cone \mathbb{K} :

$$\mathbb{K}^* = \{ y \mid \langle y, x \rangle \ge 0 \text{ for all } x \in \mathbb{K} \}$$

note: definition depends on choice of inner product

Examples

	\mathbb{K}	\mathbb{K}^*
nonnegative orthant	\mathbb{R}^n_+	\mathbb{R}^n_+
nonnegative orthant	$\{(x,t) \mid x _2 \le t\}$	$\{(x,t) \mid \ x\ _2 \le t\}$
nonnegative orthant	$\{(x,t) \mid x _1 \le t\}$	$\{(x,t) \mid \ x\ _{\infty} \le t\}$
nonnegative orthant	\mathbb{S}^n_+	\mathbb{S}^n_+

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ s.t.

$$a^{\top}x \leq b$$
 for $x \in \mathbb{C}$, $a^{\top}x \geq b$ for $x \in \mathbb{D}$

the hyperplane $\{x \mid a^{\top}x = b\}$ separates \mathbb{C} and \mathbb{D}

strict separation requires additional assumptions (e.g., \mathbb{C} closed, \mathbb{D} a singleton)

Supporting hyperplane theorem

Supporting hyperplane to set \mathbb{C} at boundary point x_0 :

$$\{x \mid a^{\top}x = a^{\top}x_0\}$$

where $a \neq 0$ and $a^{\top}x \leq a^{\top}x_0$ for all $x \in \mathbb{C}$

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set $\ensuremath{\mathbb{C}}$