CSED700H: Convex Optimization
 Convex sets ${ }^{1}$

Namhoon Lee

POSTECH

Fall 2023

[^0]
Contents

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- dual cones
- separating and supporting hyperplanes

Affine set

Line through points x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad \text { with } \theta \in \mathbb{R}
$$

Affine set: contains the line through any two distinct points in the set
Example: solution set of linear equations $\{x \mid A x=b\}$
conversely, every affine set can be expressed as solution set of linear equations

Convex set

Line segment between points $x 1, x 2$: all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad \text { with } 0 \leq \theta \leq 1
$$

Convex set: contains line segment between any two points in the set

$$
x 1, x 2 \in \mathbb{C}, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in \mathbb{C}
$$

Examples (one convex, two nonconvex sets)

Convex combination and convex hull

Convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
Convex hull: conv \mathbb{S} is set of all convex combinations of points in \mathbb{S}

Convex cone

Conic (nonnegative) combination of points x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2} \quad \text { with } \theta_{1} \geq 0, \theta_{2} \geq 0
$$

Convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

Hyperplane: set of the form $\left\{x \mid a^{\top} x=b\right\}$ where $a \neq 0$
x_{0} is a particular element, e.g.,

$$
\begin{gathered}
x_{0}=\frac{b}{a^{\top} a} a \\
a^{\top} x=b \text { if and only if } a \perp\left(x-x_{0}\right)
\end{gathered}
$$

Halfspace: set of the form $\left\{x \mid a^{\top} x \leq b\right\}$ where $a \neq 0$

hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

$\|\cdot\|_{2}$ denotes the Euclidean norm
Ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{c}\right)^{\top} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

with P symmetric positive definite
other representation: $\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}$ with A square and nonsingular

Principal axes

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{\top} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

Eigendecomposition: $P=Q \Lambda Q^{\top}=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{\top}$

- Q is orthogonal $\left(Q^{\top}=Q^{-1}\right)$ with columns q_{i}
- Λ is diagonal with diagonal elements $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$

Change of variables: $y=Q^{\top}\left(x-x_{c}\right), x=x_{c}+Q y$

- after the change of variables the ellipsoid is described by

$$
y^{\top} \Lambda^{-1} y=y_{1}^{2} / \lambda_{1}+\cdots+y_{n}^{2} / \lambda_{n} \leq 1
$$

an ellipsoid centered at the origin, and aligned with the coordinate axes

- eigenvectors q_{i} of P give the principal axes of \mathcal{E}
- the width of \mathcal{E} along the principal axis determined by q_{i} is $2 \sqrt{\lambda_{i}}$

Example in \mathbb{R}^{2}

Exercise: give an interpretation of $\operatorname{tr}(P)$ as a measure of the size of

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{\top} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

Norms

Norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0$ for all x
- $\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbb{R}$
- $\|x+y\| \leq\|x\|+\|y\|$

Notation

- $\|\cdot\|$ is a general (unspecified) norm
- $\|\cdot\|_{\text {symb }}$ is a particular norm

Frequently used norms

Vector norm $\left(x \in \mathbb{R}^{n}\right)$

- Euclidean norm $\|x\|_{2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$
- p-norm $(p \geq 1)$ and ∞-norm (Chebyshev norm)

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, \quad\|x\|_{\infty}=\max _{k=1, \ldots, n}\left|x_{k}\right|
$$

- quadratic norm: $\|x\|_{A}=\left(x^{\top} A x\right)^{1 / 2}$, with A symmetric positive definite

Matrix norms $\left(X \in \mathbb{R}^{m \times n}\right)$

- Frobenius norm: $\|X\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}$
- 2-norm (spectral norm, operator norm)

$$
\|X\|_{2}=\sup _{y \neq 0} \frac{\|X y\|_{2}}{\|y\|_{2}}=\sigma_{\max }(X)
$$

$$
\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2} \text { is largest singular value of } X
$$

Norm balls and norm cones

Norm ball with center x_{c} and radius r :

$$
\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}
$$

norm balls are convex

Norm cone:

$$
\{(x, t) \mid\|x\| \leq t\}
$$

- norm cones are convex
- example: second order cone (norm cone for Euclidean norm)

Polyhedra

Polyhedron: solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

\preceq denotes componentwise inequality between vectors

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

Notation

- \mathbb{S}^{n} is set of symmetric $n \times n$ matrices
- $\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices

$$
X \in \mathbb{S}_{+}^{n} \quad \Longleftrightarrow \quad z^{\top} X z \geq 0 \text { for all } z
$$

\mathbb{S}_{+}^{n} is a convex cone

- $\mathbb{S}_{++}^{n}=\left\{X \in \mathbb{S}^{n} \mid X \succ 0\right\}:$ positive definite $n \times n$ matrices

Example

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \in \mathbb{S}_{+}^{2}
$$

Operations that preserve convexity

methods for establishing convexity of a set \mathbb{C}

1. apply definition

$$
x_{1}, x_{2} \in \mathbb{C}, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in \mathbb{C}
$$

2. show that \mathbb{C} is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

Example

$$
\mathbb{S}=\left\{x \in \mathbb{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$ for $m=2$:

Affine function

suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine function:

$$
f(x)=A x+b
$$

with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

- the image of a convex set under f is convex

$$
\mathbb{S} \subseteq \mathbb{R}^{n} \text { convex } \quad \Longrightarrow \quad f(\mathbb{S})=\{A x+b \mid x \in \mathbb{C}\} \quad \text { is convex }
$$

- the inverse image $f^{-1}(\mathbb{C})$ of a convex set under f is convex

$$
\mathbb{C} \subseteq \mathbb{R}^{m} \text { convex } \quad \Longrightarrow \quad f^{-1}(\mathbb{C})=\left\{x \in \mathbb{R}^{m} \mid A x+b \in \mathbb{C}\right\} \quad \text { is convex }
$$

Examples

- scaling, translation, projection
- image and inverse image of norm ball under affine transformation

$$
\{A x+b \mid\|x\| \leq 1\}, \quad\{x \mid\|A x+b\| \leq 1\}
$$

- hyperbolic cone

$$
\left\{x \mid x^{\top} P x \leq\left(c^{\top} x\right)^{2}, c^{\top} x \geq 0\right\}, \quad \text { with } P \in \mathbb{S}_{+}^{n}
$$

- solution set of linear matrix inequality

$$
\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \preceq B\right\}, \quad \text { with } A_{i}, B \in \mathbb{S}^{p}
$$

Perspective and linear-fractional function

Perspective function $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex
Linear-fractional function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{\top} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{\top} x+d>0\right\}
$$

image and inverse image of convex sets under linear-fractional function are convex

Example

a linear-fractional function from \mathbb{R}^{2} to \mathbb{R}^{2}

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x, \quad \operatorname{dom} f=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}+x_{2}+1>0\right\}
$$

Proper cone

Proper cone: a convex cone $\mathbb{K} \in \mathbb{R}^{n}$ that satisifes three properties

- \mathbb{K} is closed (contains its boundary)
- \mathbb{K} is solid (has nonempty interior)
- \mathbb{K} is pointed (contains no line)

Examples

- nonnegative orthant

$$
\mathbb{K}=\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}
$$

- positive semidefinite cone $\mathbb{K}=\mathbb{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
\mathbb{K}=\left\{x \in \mathbb{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

Generalized inequality

Generalized inequality defined by a proper cone \mathbb{K} :

$$
x \preceq_{\mathbb{K}} y \quad \Longleftrightarrow \quad y-x \in \mathbb{K}, \quad x \prec_{\mathbb{K}} y \quad \Longleftrightarrow \quad y-x \in \operatorname{int} \mathbb{K}
$$

Examples

- componentwise inequality $\left(\mathbb{K}=\mathbb{R}_{+}^{n}\right)$

$$
x \preceq_{\mathbb{R}_{+}^{n}} y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

- matrix inequality $\left(\mathbb{K}=\mathbb{S}_{+}^{n}\right)$

$$
X \preceq_{\mathbb{S}_{+}^{n}} Y \quad \Longleftrightarrow \quad Y-X \text { positive semidefinite }
$$

these two types are so common that we drop the subscript in $\preceq_{\mathbb{K}}$
Properties: many properties of $\preceq \mathbb{K}$ are similar to \leq on \mathbb{R}, e.g.,

$$
x \preceq_{\mathbb{K}} y, \quad u \preceq_{\mathbb{K}} v \quad \Longrightarrow \quad x+u \preceq_{\mathbb{K}} y+v
$$

Minimum and minimal elements

$\preceq_{\mathbb{K}}$ is not in general a linear ordering: we can have $x \preceq_{\mathbb{K}} y$ and $y \not_{\mathbb{K}} x$
$x \in \mathbb{S}$ is the minimum element of \mathbb{S} with respect to $\prec_{\mathbb{K}}$ if

$$
y \in \mathbb{S} \quad \Longrightarrow \quad x \preceq_{\mathbb{K}} y
$$

$x \in \mathbb{S}$ is the minimal element of \mathbb{S} with respect to $\prec_{\mathbb{K}}$ if

$$
y \in \mathbb{S}, \quad y \preceq_{\mathbb{K}} x \quad \Longrightarrow \quad y=x
$$

Example $\left(\mathbb{K}=\mathbb{R}_{+}^{2}\right)$

x_{1} is the minimum element of \mathbb{S}_{1} x_{2} is the minimum element of \mathbb{S}_{2}

Inner products

in this course we will use the following standard inner products

- for vectors $x, y \in \mathbb{R}^{n}$:

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=x^{\top} y
$$

- for matrices $X, Y \in \mathbb{R}^{m \times n}$:

$$
\langle X, Y\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}=\operatorname{tr}\left(X^{\top} Y\right)
$$

- for symmetric matrices $X, Y \in \mathbb{S}^{n}$:

$$
\langle X, Y\rangle=\sum_{i=1}^{n} X_{i i} Y_{i i}+2 \sum_{i>j} X_{i j} Y_{i j}=\operatorname{tr}(X Y)
$$

Dual cones

Dual cone of a cone \mathbb{K} :

$$
\mathbb{K}^{*}=\{y \mid\langle y, x\rangle \geq 0 \text { for all } x \in \mathbb{K}\}
$$

note: definition depends on choice of inner product

Examples

	\mathbb{K}	\mathbb{K}^{*}				
nonnegative orthant	\mathbb{R}_{+}^{n}	\mathbb{R}_{+}^{n}				
nonnegative orthant	$\left\{(x, t) \mid\\|x\\|_{2} \leq t\right\}$	$\left\{(x, t) \mid\\|x\\|_{2} \leq t\right\}$				
nonnegative orthant	$\left\{(x, t) \mid\\|x\\|_{1} \leq t\right\}$	$\left\{(x, t) \mid\\|x\\|_{\infty} \leq t\right\}$				
nonnegative orthant	\mathbb{S}_{+}^{n}	\mathbb{S}_{+}^{n}				

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ s.t.

$$
a^{\top} x \leq b \text { for } x \in \mathbb{C}, \quad a^{\top} x \geq b \text { for } x \in \mathbb{D}
$$

the hyperplane $\left\{x \mid a^{\top} x=b\right\}$ separates \mathbb{C} and \mathbb{D}
strict separation requires additional assumptions (e.g., \mathbb{C} closed, \mathbb{D} a singleton)

Supporting hyperplane theorem

Supporting hyperplane to set \mathbb{C} at boundary point x_{0} :

$$
\left\{x \mid a^{\top} x=a^{\top} x_{0}\right\}
$$

where $a \neq 0$ and $a^{\top} x \leq a^{\top} x_{0}$ for all $x \in \mathbb{C}$

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set \mathbb{C}

[^0]: ${ }^{1}$ slides credits to Prof. Lieven Vandenberghe

