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Affine set

Line through points x1, x2: all points

x = θx1 + (1− θ)x2 with θ ∈ R

Affine set: contains the line through any two distinct points in the set

Example: solution set of linear equations {x | Ax = b}
conversely, every affine set can be expressed as solution set of linear equations
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Convex set
Line segment between points x1, x2: all points

x = θx1 + (1− θ)x2 with 0 ≤ θ ≤ 1

Convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

Examples (one convex, two nonconvex sets)
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Convex combination and convex hull

Convex combination of x1, . . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0

Convex hull: conv S is set of all convex combinations of points in S
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Convex cone

Conic (nonnegative) combination of points x1 and x2: any point of the form

x = θ1x1 + θ2x2 with θ1 ≥ 0, θ2 ≥ 0

Convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces
Hyperplane: set of the form {x | a>x = b} where a 6= 0

x0 is a particular element, e.g.,

x0 =
b

a>a
a

a>x = b if and only if a ⊥ (x− x0)

Halfspace: set of the form {x | a>x ≤ b} where a 6= 0

hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids
(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖ ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

‖ · ‖2 denotes the Euclidean norm

Ellipsoid: set of the form

{x | (x− xc)>P−1(x− xc) ≤ 1}

with P symmetric positive definite

other representation: {xc +Au | ‖u‖2 ≤ 1} with A square and nonsingular
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Principal axes

E = {x | (x− xc)>P−1(x− xc) ≤ 1}

Eigendecomposition: P = QΛQ> =
∑n

i=1 λiqiq
>
i

I Q is orthogonal (Q> = Q−1) with columns qi
I Λ is diagonal with diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λn > 0

Change of variables: y = Q>(x− xc), x = xc +Qy

I after the change of variables the ellipsoid is described by

y>Λ−1y = y21/λ1 + · · ·+ y2n/λn ≤ 1

an ellipsoid centered at the origin, and aligned with the coordinate axes

I eigenvectors qi of P give the principal axes of E
I the width of E along the principal axis determined by qi is 2

√
λi
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Example in R2

Exercise: give an interpretation of tr(P ) as a measure of the size of

E = {x | (x− xc)>P−1(x− xc) ≤ 1}
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Norms

Norm: a function ‖ · ‖ that satisfies

I ‖x‖ ≥ 0 for all x

I ‖x‖ = 0 if and only if x = 0

I ‖tx‖ = |t|‖x‖ for t ∈ R
I ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Notation

I ‖ · ‖ is a general (unspecified) norm

I ‖ · ‖symb is a particular norm
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Frequently used norms
Vector norm (x ∈ Rn)

I Euclidean norm ‖x‖2 = (x21 + · · ·+ x2n)1/2

I p-norm (p ≥ 1) and ∞-norm (Chebyshev norm)

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p, ‖x‖∞ = max
k=1,...,n

|xk|

I quadratic norm: ‖x‖A = (x>Ax)1/2, with A symmetric positive definite

Matrix norms (X ∈ Rm×n)

I Frobenius norm: ‖X‖F = (
∑m

i=1

∑n
j=1X

2
ij)

1/2

I 2-norm (spectral norm, operator norm)

‖X‖2 = sup
y 6=0

‖Xy‖2
‖y‖2

= σmax(X)

σmax(X) = (λmax(X
>X))1/2 is largest singular value of X
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Norm balls and norm cones
Norm ball with center xc and radius r:

{x | ‖x− xc‖ ≤ r}

norm balls are convex

Norm cone:
{(x, t) | ‖x‖ ≤ t}

I norm cones are convex
I example: second order cone (norm cone for Euclidean norm)
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Polyhedra
Polyhedron: solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

� denotes componentwise inequality between vectors

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone
Notation
I Sn is set of symmetric n× n matrices
I Sn+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn+ ⇐⇒ z>Xz ≥ 0 for all z

Sn+ is a convex cone
I Sn++ = {X ∈ Sn | X � 0}: positive definite n× n matrices

Example [
x y
y z

]
∈ S2+
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Operations that preserve convexity

methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm
balls, ...) by operations that preserve convexity
I intersection
I affine functions
I perspective function
I linear-fractional functions
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Intersection
the intersection of (any number of) convex sets is convex

Example
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xm cosmt

for m = 2:

17 / 28



Affine function

suppose f : Rn → Rm is an affine function:

f(x) = Ax+ b

with A ∈ Rm×n, b ∈ Rm

I the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {Ax+ b | x ∈ C} is convex

I the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rm | Ax+ b ∈ C} is convex
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Examples

I scaling, translation, projection

I image and inverse image of norm ball under affine transformation

{Ax+ b | ‖x‖ ≤ 1}, {x | ‖Ax+ b‖ ≤ 1}

I hyperbolic cone

{x | x>Px ≤ (c>x)2, c>x ≥ 0}, with P ∈ Sn+

I solution set of linear matrix inequality

{x | x1A1 + · · ·+ xmAm � B}, with Ai, B ∈ Sp
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Perspective and linear-fractional function

Perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function f : Rn → Rm:

f(x) =
Ax+ b

c>x+ d
, dom f = {x | c>x+ d > 0}

image and inverse image of convex sets under linear-fractional function are convex

20 / 28



Example
a linear-fractional function from R2 to R2

f(x) =
1

x1 + x2 + 1
x, dom f = {(x1, x2) | x1 + x2 + 1 > 0}
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Proper cone

Proper cone: a convex cone K ∈ Rn that satisifes three properties

I K is closed (contains its boundary)

I K is solid (has nonempty interior)

I K is pointed (contains no line)

Examples

I nonnegative orthant

K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

I positive semidefinite cone K = Sn+
I nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}
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Generalized inequality
Generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

Examples
I componentwise inequality (K = Rn

+)

x �Rn
+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

I matrix inequality (K = Sn+)

X �Sn+ Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in �K

Properties: many properties of � K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x+ u �K y + v
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Minimum and minimal elements
�K is not in general a linear ordering: we can have x �K y and y �K x

x ∈ S is the minimum element of S with respect to ≺K if

y ∈ S =⇒ x �K y

x ∈ S is the minimal element of S with respect to ≺K if

y ∈ S, y �K x =⇒ y = x

Example (K = R2
+)

x1 is the minimum element of S1
x2 is the minimum element of S2
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Inner products
in this course we will use the following standard inner products

I for vectors x, y ∈ Rn:

〈x, y〉 = x1y1 + · · ·+ xnyn = x>y

I for matrices X,Y ∈ Rm×n:

〈X,Y 〉 =

m∑
i=1

n∑
j=1

XijYij = tr(X>Y )

I for symmetric matrices X,Y ∈ Sn:

〈X,Y 〉 =

n∑
i=1

XiiYii + 2
∑
i>j

XijYij = tr(XY )
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Dual cones

Dual cone of a cone K:

K∗ = {y | 〈y, x〉 ≥ 0 for all x ∈ K}

note: definition depends on choice of inner product

Examples

K K∗
nonnegative orthant Rn

+ Rn
+

nonnegative orthant {(x, t) | ‖x‖2 ≤ t} {(x, t) | ‖x‖2 ≤ t}
nonnegative orthant {(x, t) | ‖x‖1 ≤ t} {(x, t) | ‖x‖∞ ≤ t}
nonnegative orthant Sn+ Sn+
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Separating hyperplane theorem
if C and D are nonempty disjoint convex sets, there exist a 6= 0, b s.t.

a>x ≤ b for x ∈ C, a>x ≥ b for x ∈ D

the hyperplane {x | a>x = b} separates C and D

strict separation requires additional assumptions (e.g., C closed, D a singleton)
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Supporting hyperplane theorem
Supporting hyperplane to set C at boundary point x0:

{x | a>x = a>x0}

where a 6= 0 and a>x ≤ a>x0 for all x ∈ C

Supporting hyperplane theorem:
there exists a supporting hyperplane at every boundary point of a convex set C
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