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Lagrangian
Standard form problem (not necessarily convex)

minimize  fo(z)
subject to  fi(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R? — R, with dom L =D x R™ x RP,

L(z,\v) = +Z)‘fl Z vihi(x)

=1

> weighted sum of objective and constraint functions
» )\; is Lagrange multiplier associated with f;(z) <0
» u; is Lagrange multiplier associated with h;(z) <0
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Lagrange dual function
Lagrange dual function: g : R x RP — R,

g\ v) = Iinf L(xz,\,v)
P
= mf (fo(z —l-z)\ fi(x +ZVihi(x))
i=1

P> a concave function of A\, v
» can be —oo for some A, v; this defines the domain of ¢

Lower bound property: if A = 0, then g(\,v) < p*
proof: if x is feasible and A > 0, then

fo(z) > L(z, A\, v) > jgif)L(alA, v) =g(\v)

minimizing over all feasible = gives p* > g(\, v)
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Least norm solution of linear equations

minimize z'z
subject to Ax =b

» Lagrangian is
L(z,v) =2z + v (Az —b)

» to minimize L over z, set gradient equal to zero:
1
Vel(z,v) =204+ ATv=0 = z= _§ATV

» plug it in L to obtain g:

a concave function of v

Lower bound property: p* > —iuTAATV — b for all v
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Standard form LP

minimize ¢’z
subject to Ax =b
x>0

» Lagrangian is
Lz, \v) = ca+v (Az—b) -z

= —bvt(c+ATv-—NTz
» L is affine in z, hence
by ATv—XA4¢=0

g()\,y):infL(x,)\,y): { .
x —00 otherwise

g is linear on affine domain domg = {(\,v) | ATv — XA + ¢ = 0}, hence concave

Lower bound property: p* > —b'vif ATv+¢>0
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Equality constrained norm minimization
minimize ||z]|
subject to Ax =b

» || || is any norm; dual norm is defined as

loll« = sup u'v
Jull<1

» define Lagrangian L(z,v) = ||z|| + v " (b — Ax)
» dual function (proof on next page):

g(v) = inf(||z]|—v Az +b"v)
{bTV AT, <1

—oo otherwise

Lower bound property: p* > b'vif [ATy|. <1
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proof of expression for g: follows from

0 yll-<1

—oo0 otherwise

inf(Jol| — y ) = {
Case ||y||. < 1:
inf(laf| —y7@) = 0
> y'x < |z||lyll« < ||z| for all z (by definition of dual norm)
> ylx=|z| forz =0
Case ||y|/« > 1

inf(2]] 4 z) = o0

> there exists an  with ||Z|| < 1 and y'% = ||y||« > 1; hence ||z — ||y|l« < O
» consider x = tZ with ¢t > 0:

lz]| =y "2 = (|l - lyll.) = —co ast— oo

8/44



Two-way partitioning

minimize ' Wz
subject to 3312 =1, +1=1,...,n
» a nonconvex problem; feasible set {—1,1}" contains 2" discrete points
> interpretation: partition {1,...,n} in two sets, x; € {—1,1} is assignment for i

» cost function is

n
Wz = Z Wi + 2 Z Wijzix;
i—1 i>j
= 1'"wW1 + 22 Wij(xixj — 1)
1>]

cost of assigning i, j to different set is —4W;;
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Lagrange dual of two-way partitioning problem

Dual function

glv) = inf(z"Wa+) vz} - 1))
i=1
= infz' (W + diag(v))z —1"v

| =1Tv W +diag(v) =0
—00 otherwise

Lower bound property
p*>—1"v if W +diag(v) = 0

example: v = —Apin(W)1 proves bound p* > nAmin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subject to Ax <b
Cx=d
Dual function

g\v) = inf (fol@)+(AAN+CTv)Tz—b"A—d )

r€dom fo

= —fA(-A"TX=CTv)—b"N—-d"v

> recall definition of conjugate f*(y) = sup,(y' = — f(z))
» simplifies derivation of dual if conjugate of fj is known

Example: entropy maximization

folx) =Y wilogai,  fily) = v
=1 i=1
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The dual problem

Lagrange dual problem
maximize g(\,v)

subject to A >0

finds best lower bound on p*, obtained from Lagrange dual function
a convex optimization problem; optimal value denoted by d*

A, v are dual feasible if A >0, (\,v) € domg

>
>
» often simplified by making implicit constraint (A, ) € dom g explicit
>
> d* = —co if problem is infeasible; d* = +oo if unbounded above

Example: standard form LP and its dual

minimize ¢'x maximize —b'v
subject to Az =1b subject to ATv4c¢>=0
x>0
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Weak and strong duality
Weak duality: d* < p*
» always holds (for convex and nonconvex problems)

» can be used to find nontrivial lower bounds for difficult problems
for example, solving the SDP

maximize —1'v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem

Strong duality: d* = p*
» does not hold in general
» (usually) holds for convex problems

> sufficient conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

Convex problem

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m
Ax =10

Slater’s constraint qualification: the problem is strictly feasible, i.e.,
Jr € intD : filx) <0, i=1,...,m, Az =b

» guarantees strong duality: p* = d*

v

also guarantees that the dual optimum is attained if p* > —o0

» can be sharpened: e.g., can replace int D with relintD (interior relative to affine
hull); linear inequalities do not need to hold with strict inequality, . ..

P there exist many other types of constraint qualifications
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Inequality form LP

Primal problem
minimize ¢z
subject to Az <b

Dual function
—b" A A" A+c¢=0

g\) =inf((c+ AT\ Tz —b")\) = { _
x —00 otherwise

Dual problem

maximize —b'\
subject to AT A+e¢=0
A=0

» from Slater's condition: p* = d* if AT < b for some T

» in fact, p* = d* always
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Quadratic program
Primal problem (assume P € S )

minimize z' Pz
subject to Ax <b

Dual function

g(\) = inf(z" Pz + AT (Az — b)) = —imuﬂm BT

x

Dual problem
1
maximize — EATAP_IATA DY
subject to A >0

» from Slater's condition: p* = d* if AZ < b for some &
» in fact, p* = d* always
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A nonconvex problem with strong duality
minimize 2z ' Az +2b'z
subject to 'z <1

we allow A % 0, hence problem may be nonconvex

Dual function (derivation on next page)
g\) = inf(z" (A+ X))z +2b"z—N)
| -bT(A+ADTB— X A+ A =0and b R(A+ M)
B —00 otherwise

Dual problem and equivalent SDP:

maximize —b' (A4 A)Tb— A maximize —t— \
' -
subject to A+ A =0 subject to [A +T)\I b] “ 0
beR(A+ M) b t
A>0 A=>0

strong duality holds although primal problem is not convex (not easy to show) 17 /44



proof of expression for g: unconstrained minimum of f(z) = 2" Pz +2¢ 47 is

—qTP_lq +r P>=0

—q'Plg+r P #0,P>0,q€R(P)
—00 P >0,q¢R(P)

—00 P#0

igf f(z) =

» if P ¥ 0, function f is unbounded below: choose y with y' Py <0and z =ty
flz) =ty " Py) +2t(q" y)+r — —00 ift = Fo0

» if P > 0, decompose ¢ as ¢ = Pu + v with u = Pfq and v = (I — PPT)q
Pu is projection of ¢ on R(P), v is projection on nullspace of P
» if v #£ 0 (i.e.,, ¢ # R(P)), the function f is unbounded below: for z = —tv,

f(z) = tZ(UTPU) — Qt(qu) +r==2|v|*+r = —c0 ift— o0
» if v =0, 2* = —u is optimal since f is convex and V f(z*) = 2Px* + 2q = 0,
f@*) =—q"Plq+r
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Geometric interpretation of duality
for simplicity, consider problem with one constraint fi(z) <0

Interpretation of dual function
g(\) = ( igfég(t + Au), where G = {(fi1(x), fo(z)) | x € D}

)

RN
[N L /pj;\
Au + t = g(/l) V”W””””"”” 1\ \‘
— g
— u u

» A\u+t = g(A)is (non-vertial) supporting hyperplane to G
» hyperplane intersects t-axis at t = g(\)
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Geometric interpretation of duality
Epigraph variation: same interpretation if G is replaced with

A ={(u,t) | fi(z) < u, fo(x) <t for some z € D}

Au+t=gA)—— P

”;E;ij’ ;mmmmmmmx‘%

Strong duality
» holds if there is a non-vertical supporting hyperplane to A at (0, p*)
» for convex problem, A is convex, hence has supporting hyperplane at (0, p*)

» Slater's condition: if there exist (u,t) € A with @ < 0, then supporting

hyperplanes at (0, p*) must be non-vertical 20/



Optimality conditions

if strong duality holds, then z is primal optimal and (\, v) is dual optimal if:
1. filx) <O0fori=1,...,mand hj(z)=0fori=1,...,p
2.A=0
3. folz) =g(Av)

conversely, these three conditions imply optimality of z, (A, v), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness
assume x satisfies the primal constraints and A > 0

p
ghv) = inf(fo(Z +Z>\fz )+ > vihi(E))
=1

zeD

< f()(.%') + Z )\Zfz(.%') + Z I/th(.%')
=1 =1
< fo(x)

equality fo(x) = g(A, v) holds if and only if the two inequalities hold with equality:
» first inequality: « minimizes L(Z, \,v) over & € D
» 2nd inequality: A;fi(z) =0fori=1,...,m, ie,

N>0 = fz(.T) =0, fz(ac) <0 = )N=0

this is known as complementary slackness
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Optimality conditions
if strong duality holds, then z is primal optimal and (\, v) is dual optimal if:
1. filx) <O0fori=1,...,mand hj(z)=0fori=1,...,p
2.A=0
3. Nifi(z)=0fori=1,...,m
4. x is a minimizer of L(-, \,v)

conversely, these four conditions imply optimality of x, (A, v), and strong duality

if problem is convex and the functions f;, h; are differentiable, #4 can be written as

4’ the gradient of the Lagrangian with respect to = vanishes:

V folx +Z>\ v filx +Zuzw

conditions 1,2,3,4" are known as Karush-Kuhn-Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem
> strong duality: p* = d*
> if optimal value is finite, dual optimum is attained: there exist dual optimal A, v

hence, if problem is convex and Slater's constraint qualification holds:
> 1z is optimal if and only if there exist A, v such that conditions 1-4 are satisfied

> if functions are differentiable, condition 4 can be replaced with 4’
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Example: water-filling

n
minimize  — Z log(x; + ;)
i=1

subject to x>0
17z=1
> we assume that a; > 0
> Lagrangian is L(#, A\, v) = — > ;log(Z; + o) = A2 +v(173 — 1)

Optimality conditions: x is optimal iff there exist A € R", v € R such that
Lz=01Tz=1
2. 220
3. )\ixi:()forizl,...,n
4. x minimizes Lagrangian:
1

x; + o4

+XN=v, i=1,...,n
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Solution
> ifv<l/a;:Ni=0andz; =1/v—q;
> ifv>1/a; iz, =0and \j =v—1/q
P> two cases may be combined as

1 1
x; = max{0, o ait, Ai = max{0,v — OTZ}
» determine v from condition 1Tz = 1:

- 1

E max{0, - —a;} =1
v

i=1

Interpretation
» n patches; level of patch i is at height «; 1o
» flood area with unit amount of water IL
> resulting level is 1/v* @
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Example: projection on 1-norm ball

o 1 2
minimize §Hx —all3
subject to [|z][; <1

Optimality conditions
Nzl <1
2.A>20

3. A0 = flzfl) =0

4

. & minimizes Lagrangian

[

- L. N
L@ = glz—allz + A2 = 1)
noq ) ) )
= Z(i(wk_ak) + A[Z]) — A
k=1
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Example: projection on 1-norm ball

Solution

P optimization problem in condition 4 is separable; solution for A > 0 is

ar — A agp > A
T = 0 —)\SakSA
ag + A ap < —A

» therefore ||z||1 = D |2k = D, max{0, |ag| — A}
» if ||alj1 <1, solutionis A =0, x =a

> otherwise, solve piecewise-linear equation in A:

> “max{0, |ag| — A} =1

k=1
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Perturbation and sensitivity analysis
(Unperturbed) optimization problem and its dual

minimize  fo(7) maximize g(\,v)
subject to  fi(z) <0, i=1,...,m subject to A >0
hi(x)=0, i=1,...,p
Perturbed problem and its dual
minimize  fo(z) maximize g(\v)—u'A—v'v
subject to  fi(z) <wu;, i=1,...,m subject to A >0
hi(x):vi, i=1,...,p

» x is primal variable; u, v are parameters
» p*(u,v) is optimal value as a function of u,v

> we are interested in information about p*(u,v) that we can obtain from the
solution of the unperturbed problem and its dual
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Global sensitivity result

» assume strong duality holds for unperturbed problem, and that A*, v* are dual
optimal for unperturbed problem

» apply weak duality to perturbed problem:

p(u,0) > g\ L) —uT AN =0 ur
= p*0,0) —u' N —0v'*

Sensitivity interpretation
» if A} is large: p* increases greatly if we tighten constraint i (u; < 0)
» if A} is small: p* does not decrease much if we loosen constraint i (u; > 0)

» if v} is large and positive: p* increases greatly if we take v; < 0);
if v* is large and negative: p* increases greatly if we take v; > 0)

» if v} is small and positive: p* does not decrease much if we take v; > 0);
is small and negative: p* does not decrease much if we take v; < 0)
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Local sensitivity result
if (in addition) p*(u,v) is differentiable at (0,0), then

00 9'(0.0)
P 8ul ’ ‘T avi
proof (for \¥): from global sensitivity result,
* * ) — p*
op™(0,0) _;, Pr(tein0) = p*(0,0) By
ou; t\,0 t
* * . — p*
o (0.0) _, P(tei,0) =p"(0.0) _ .
8ui t, 0 t
hence, equality
p*(u) for a problem with one \
(inequality) constraint: \\

P*(0) — Mu

e ()
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Duality and problem reformulations

» equivalent formulations of a problem can lead to very different duals

» reformulating the primal problem can be useful when the dual is difficult to drive,
or uninteresting

Common reformulations
P introduce new variables and equality constraints
> make explicit constraints implicit or vice-versa

> transform objective or constraint functions
e.g., replace fo(x) by ¢(fo(z)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize fo(Ax + b)

» dual function is constant: g = inf, L(x) = inf, fo(Az +b) = p*

> we have strong duality, but dual is quite useless

Reformulated problem and its dual
minimize  fo(y) maximize b'v — fi(v)

subject to Az +b—y=0 subject to ATv =0

gv) =
_ {—fg(u)+bTy AY =0

dual function follows from
= inf(fo(y)—v'y+v Az +0b'v)
x7y

—00 otherwise
33/44



Example: norm approximation
minimize ||[Az —b| — minimize ||y||
subject to y= Az —b
Dual function
gv) = inf(ly| +v'y—v Az +by)

—00 otherwise

B {bTmnfy(uyany) AY =0

—oo otherwise

B {bTV AV =0, ||, <1

(last step follows from (1))
Dual of norm approximation problem
maximize b'v
subject to ATv =0
]l <1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢'x

subject to Ax =b
—1<zx=<1

maximize —b'v — 1T/\1 — 1T)\2

subject to ¢+ ATv4+ A — Ay =0

Reformulation with box constraints made implicit

minimize
subject to

dual function

A1=0, A2 =0
c'r -1 <zx=x1
fo(x) = { .
00 otherwise
Ax =10

inf (c'z4+v(Az —b))

~1=<z<1
—b'v—||ATv + |y

Dual problem: maximize —b'v — [|[ATv + ¢|;
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Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m

hi(x)=0, i=1,....p
<k, is generalized inequality on RF:
Lagrangian and dual function: definitions are parallel to scalar case

> Lagrange multiplier for f;(z) <k, 0 is vector \; € R¥i
» Lagrangian L : R” x R¥1 x ... RF» x RP — R, is defined as

L(St?,)\l,"-,)\m, +Z)\sz "‘ZW i

» dual function g : RFt x ... RFm x RP — R, is defined as

g,y Am,v) = inf L(z, A\, -, A, v)

€D
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Lagrange dual of problems with generalized inequalities
Lower bound property: if \; =+ 0, then g(A1,..., Am,v) < p*
proof: if x is feasible and A EK.* 0, then

fO(x) > +Z)\sz +ZV1 i )
> %Ié%L(x,/\l,...,)\m,I/)
= g()\lv"’a)\may)
minimizing over all feasible = gives p* > g(A1,..., A\, V)
Dual problem
maximize g(A1, ..., Am, V)
subject to A =g 0, i=1,...,m

» weak duality: p* > d* always
> strong duality: p* = d* for convex problem with constraint qualification

(for example, Slater’s: primal problem is strictly feasible) N



Semidefinite program

minimize c¢'x
subject to x1F1 4+ -+ x,Fn <G

matrices F1, ..., F,,, G are symmetric k x k

Lagrangian and dual function
> Lagrange multiplier is matrix Z € S¥; Lagrangian is

L(z,Z) = ¢ z+tr(Z(x1Fy+- +x,F, — G))
n

= > ((FZ) + ci)a; — tr(GZ)
i=1
» dual function
—tr(GZ) tr(F72 =0,1=1,...,
g(Z)zinfL(x,z>:{ r(GZ) wlEiZ) +e=0,4 "
x —00 otherwise
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Dual semidefinite program

maximize — tr(GZ2)
subject to tr(F;Z)4+¢;=0,i=1,...,n
Z >0

Weak duality: p* > d* always
proof: for primal feasible x, dual feasible Z,

clr = — Zn:tr(FiZ)xi
=1
= —tr(GZ)+tr(Z(G - Zn: z;F;))
=1
> —tr(G2)

inequality follows from tr(XZ) >0 for X = 0,7 > 0

Strong duality: p* = d* if primal SDP or dual SDP is strictly feasible
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Complementary slackness

(P) minimize ¢'x (D) maximize —tr(GZ)
n
subject to Z%F" <G subject to tr(F;Z)4+¢ =0, i=1,...
i=1
Zr-0
the primal and dual objective values at feasible x, Z are equal if
0 = c¢'z+tr(G2)

n
= - Zazl tr(F;Z) +tr(G2)
i=1
= tr(XZ) where X =G —a21Fy — - —x,F,
for X = 0,7 = 0, each of the following statements is equivalent to tr(XZ) = 0:
» ZX = 0: columns of X are in the nullspace of Z
» X7 = 0: columns of Z are in the nullspace of X

40/ 44



proof: factorize X, Z as
X=v0U", z=vv'

» columns of U span the range of X, columns of V' span the range of Z
» tr(XZ) can be expressed as

tr(X2Z) =te(UU'VVT) =t (UTVY(VTD) = UV |%
» hence, tr(XZ) =0 if and only if
U'v=0

the range of X and the range of Z are orthogonal subspaces
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Example: two-way partitioning

recall the two-way partitioning problem and its dual
(P) minimize 1z Wz (D) maximize —1'v

subject to 27 =1, i=1,...,n subject to W + diag(v) = 0

» by weak duality, p* > d*
» the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)

» to derive the dual of (D), we first write (D) as a minimization problem:

minimize 1Ty

2
subject to W + diag(y) = 0 )

the optimal value of (2) is —d*
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Example: two-way partitioning

Lagrangian
L(y.Z) = 1Ty—te(Z(W + diag(y)))
= —w(W2)+ > il — Zy)
i=1

Dual function

9(Z) =inf L(y,Z) = .
Yy —00 otherwise

Dual problem: the dual of (2) is

maximize — tr(WZ2)
subject to Z; =1, i=1,...,n
Z =0

by strong duality with (2), optimal value is equal to —d*

{—tr(WZ) Zi=1,i=1,...

,n
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Example: two-way partitioning
replace (D) by its dual

(P) minimize 1z Wz (P') minimize tr(WZ2)
subject to 7 =1, i=1,...,n subject to diag(Z) =1
Z >0

optimal value of (P') is equal to optimal value d* of (D)

Interpretation as relaxation

» reformulate (P) by introducing a new variable Z = 2z ":

minimize  tr(WZ2)
subject to diag(Z) =1

Z=xx'

» replace the constraint Z = xx! with a weaker convex constraint Z = 0
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