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Lagrangian
Standard form problem (not necessarily convex)

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

I weighted sum of objective and constraint functions

I λi is Lagrange multiplier associated with fi(x) ≤ 0

I νi is Lagrange multiplier associated with hi(x) ≤ 0
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Lagrange dual function
Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x))

I a concave function of λ, ν

I can be −∞ for some λ, ν; this defines the domain of g

Lower bound property: if λ � 0, then g(λ, ν) ≤ p?
proof: if x is feasible and λ ≥ 0, then

f0(x) ≥ L(x, λ, ν) ≥ inf
x̃∈D

L(x̃, λ, ν) = g(λ, ν)

minimizing over all feasible x gives p? ≥ g(λ, ν)
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Least norm solution of linear equations

minimize x>x

subject to Ax = b

I Lagrangian is
L(x, ν) = x>x+ ν>(Ax− b)

I to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+A>ν = 0 =⇒ x = −1

2
A>ν

I plug it in L to obtain g:

g(ν) = L(−1

2
A>ν, ν) = −1

4
ν>AA>ν − b>ν

a concave function of ν

Lower bound property: p? ≥ −1
4ν
>AA>ν − b>ν for all ν
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Standard form LP

minimize c>x

subject to Ax = b

x � 0

I Lagrangian is
L(x, λ, ν) = c>x+ ν>(Ax− b)− λ>x

= − b>ν + (c+A>ν − λ)>x
I L is affine in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−b>ν A>ν − λ+ c = 0

−∞ otherwise

g is linear on affine domain dom g = {(λ, ν) | A>ν − λ+ c = 0}, hence concave

Lower bound property: p? ≥ −b>ν if A>ν + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

I ‖ · ‖ is any norm; dual norm is defined as

‖v‖∗ = sup
‖u‖≤1

u>v

I define Lagrangian L(x, ν) = ‖x‖+ ν>(b−Ax)
I dual function (proof on next page):

g(ν) = inf
x
(‖x‖ − ν>Ax+ b>ν)

=

{
b>ν ‖A>ν‖∗ ≤ 1

−∞ otherwise

Lower bound property: p? ≥ b>ν if ‖A>ν‖∗ ≤ 1
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proof of expression for g: follows from

inf
x
(‖x‖ − y>x) =

{
0 ‖y‖∗ ≤ 1

−∞ otherwise
(1)

Case ‖y‖∗ ≤ 1:
inf
x
(‖x‖ − y>x) = 0

I y>x ≤ ‖x‖‖y‖∗ ≤ ‖x‖ for all x (by definition of dual norm)
I y>x = ‖x‖ for x = 0

Case ‖y‖∗ > 1:
inf
x
(‖x‖ − y>x) = −∞

I there exists an x̃ with ‖x̃‖ ≤ 1 and y>x̃ = ‖y‖∗ > 1; hence ‖x̃‖ − ‖y‖∗ < 0
I consider x = tx̃ with t > 0:

‖x‖ − y>x = t(‖x̃‖ − ‖y‖∗)→ −∞ as t→∞
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Two-way partitioning

minimize x>Wx

subject to x2i = 1, i = 1, . . . , n

I a nonconvex problem; feasible set {−1, 1}n contains 2n discrete points

I interpretation: partition {1, . . . , n} in two sets, xi ∈ {−1, 1} is assignment for i

I cost function is

x>Wx =

n∑
i=1

Wii + 2
∑
i>j

Wijxixj

= 1>W1+ 2
∑
i>j

Wij(xixj − 1)

cost of assigning i, j to different set is −4Wij
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Lagrange dual of two-way partitioning problem

Dual function

g(ν) = inf
x
(x>Wx+

n∑
i=1

νi(x
2
i − 1))

= inf
x
x>(W + diag(ν))x− 1>ν

=

{
−1>ν W + diag(ν) � 0

−∞ otherwise

Lower bound property

p? ≥ −1>ν if W + diag(ν) � 0

example: ν = −λmin(W )1 proves bound p? ≥ nλmin(W )
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Lagrange dual and conjugate function

minimize f0(x)

subject to Ax � b
Cx = d

Dual function

g(λ, ν) = inf
x∈dom f0

(f0(x) + (A>λ+ C>ν)>x− b>λ− d>ν)

= − f∗0 (−A>λ− C>ν)− b>λ− d>ν

I recall definition of conjugate f∗(y) = supx(y
>x− f(x))

I simplifies derivation of dual if conjugate of f0 is known

Example: entropy maximization

f0(x) =

n∑
i=1

xi log xi, f∗0 (y) =

n∑
i=1

eyi−1
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The dual problem
Lagrange dual problem

maximize g(λ, ν)

subject to λ ≥ 0

I finds best lower bound on p?, obtained from Lagrange dual function
I a convex optimization problem; optimal value denoted by d?

I often simplified by making implicit constraint (λ, ν) ∈ dom g explicit
I λ, ν are dual feasible if λ ≥ 0, (λ, ν) ∈ dom g
I d? = −∞ if problem is infeasible; d? = +∞ if unbounded above

Example: standard form LP and its dual

minimize c>x maximize − b>ν
subject to Ax = b subject to A>ν + c � 0

x � 0
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Weak and strong duality
Weak duality: d? ≤ p?

I always holds (for convex and nonconvex problems)

I can be used to find nontrivial lower bounds for difficult problems
for example, solving the SDP

maximize − 1>ν

subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem

Strong duality: d? = p?

I does not hold in general

I (usually) holds for convex problems

I sufficient conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification
Convex problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Slater’s constraint qualification: the problem is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

I guarantees strong duality: p? = d?

I also guarantees that the dual optimum is attained if p? > −∞
I can be sharpened: e.g., can replace intD with relintD (interior relative to affine

hull); linear inequalities do not need to hold with strict inequality, . . .

I there exist many other types of constraint qualifications
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Inequality form LP
Primal problem

minimize c>x

subject to Ax � b

Dual function

g(λ) = inf
x
((c+A>λ)>x− b>λ) =

{
−b>λ A>λ+ c = 0

−∞ otherwise

Dual problem
maximize − b>λ
subject to A>λ+ c = 0

λ � 0

I from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃
I in fact, p? = d? always
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Quadratic program
Primal problem (assume P ∈ Sn++)

minimize x>Px

subject to Ax � b

Dual function

g(λ) = inf
x
(x>Px+ λ>(Ax− b)) = −1

4
λ>AP−1A>λ− b>λ

Dual problem

maximize − 1

4
λ>AP−1A>λ− b>λ

subject to λ � 0

I from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃
I in fact, p? = d? always
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A nonconvex problem with strong duality

minimize x>Ax+ 2b>x

subject to x>x ≤ 1

we allow A � 0, hence problem may be nonconvex

Dual function (derivation on next page)

g(λ) = inf
x
(x>(A+ λI)x+ 2b>x− λ)

=

{
−b>(A+ λI)†b− λ A+ λI � 0 and b ∈ R(A+ λI)

−∞ otherwise

Dual problem and equivalent SDP:

maximize − b>(A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

λ ≥ 0

maximize − t− λ

subject to

[
A+ λI b
b> t

]
� 0

λ ≥ 0

strong duality holds although primal problem is not convex (not easy to show) 17 / 44



proof of expression for g: unconstrained minimum of f(x) = x>Px+ 2q>x+ r is

inf
x
f(x) =


−q>P−1q + r P � 0

−q>P †q + r P � 0, P � 0, q ∈ R(P )
−∞ P � 0, q /∈ R(P )
−∞ P � 0

I if P � 0, function f is unbounded below: choose y with y>Py < 0 and x = ty

f(x) = t2(y>Py) + 2t(q>y) + r → −∞ if t→ ±∞

I if P � 0, decompose q as q = Pu+ v with u = P †q and v = (I − PP †)q
Pu is projection of q on R(P ), v is projection on nullspace of P

I if v 6= 0 (i.e., q 6= R(P )), the function f is unbounded below: for x = −tv,

f(x) = t2(v>Pv)− 2t(q>v) + r = −2t‖v‖2 + r → −∞ if t→∞

I if v = 0, x? = −u is optimal since f is convex and ∇f(x?) = 2Px? + 2q = 0;

f(x?) = −q>P †q + r
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Geometric interpretation of duality
for simplicity, consider problem with one constraint f1(x) ≤ 0

Interpretation of dual function

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

I λu+ t = g(λ) is (non-vertial) supporting hyperplane to G
I hyperplane intersects t-axis at t = g(λ)
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Geometric interpretation of duality
Epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

Strong duality
I holds if there is a non-vertical supporting hyperplane to A at (0, p?)
I for convex problem, A is convex, hence has supporting hyperplane at (0, p?)
I Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting

hyperplanes at (0, p?) must be non-vertical
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Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p

2. λ � 0

3. f0(x) = g(λ, ν)

conversely, these three conditions imply optimality of x, (λ, ν), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness
assume x satisfies the primal constraints and λ � 0

g(λ, ν) = inf
x̃∈D

(f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃))

≤ f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

≤ f0(x)

equality f0(x) = g(λ, ν) holds if and only if the two inequalities hold with equality:

I first inequality: x minimizes L(x̃, λ, ν) over x̃ ∈ D
I 2nd inequality: λifi(x) = 0 for i = 1, . . . ,m, i.e.,

λi > 0 =⇒ fi(x) = 0, fi(x) < 0 =⇒ λi = 0

this is known as complementary slackness
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Optimality conditions
if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p

2. λ � 0

3. λifi(x) = 0 for i = 1, . . . ,m

4. x is a minimizer of L(·, λ, ν)

conversely, these four conditions imply optimality of x, (λ, ν), and strong duality

if problem is convex and the functions fi, hi are differentiable, #4 can be written as

4’ the gradient of the Lagrangian with respect to x vanishes:

∇f0(x) +
m∑
i=1

λi∇fi(x) +
p∑
i=1

νi∇hi(x) = 0

conditions 1,2,3,4’ are known as Karush-Kuhn-Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

I strong duality: p? = d?

I if optimal value is finite, dual optimum is attained: there exist dual optimal λ, ν

hence, if problem is convex and Slater’s constraint qualification holds:

I x is optimal if and only if there exist λ, ν such that conditions 1-4 are satisfied

I if functions are differentiable, condition 4 can be replaced with 4’
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Example: water-filling

minimize −
n∑
i=1

log(xi + αi)

subject to x � 0

1>x = 1

I we assume that αi > 0
I Lagrangian is L(x̃, λ, ν) = −

∑
i log(x̃i + αi)− λ>x̃+ ν(1>x̃− 1)

Optimality conditions: x is optimal iff there exist λ ∈ Rn, ν ∈ R such that

1. x � 0, 1>x = 1
2. λ � 0
3. λixi = 0 for i = 1, . . . , n
4. x minimizes Lagrangian:

1

xi + αi
+ λi = ν, i = 1, . . . , n
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Solution
I if ν < 1/αi : λi = 0 and xi = 1/ν − αi
I if ν ≥ 1/αi : xi = 0 and λi = ν − 1/αi
I two cases may be combined as

xi = max{0, 1
ν
− αi}, λi = max{0, ν − 1

αi
}

I determine ν from condition 1>x = 1:
n∑
i=1

max{0, 1
ν
− αi} = 1

Interpretation

I n patches; level of patch i is at height αi
I flood area with unit amount of water

I resulting level is 1/ν?
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Example: projection on 1-norm ball

minimize
1

2
‖x− a‖22

subject to ‖x‖1 ≤ 1

Optimality conditions

1. ‖x‖1 ≤ 1

2. λ ≥ 0

3. λ(1− ‖x‖1) = 0

4. x minimizes Lagrangian

L(x̃, λ) =
1

2
‖x̃− a‖22 + λ(‖x̃‖1 − 1)

=

n∑
k=1

(
1

2
(x̃k − ak)2 + λ|x̃k|)− λ
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Example: projection on 1-norm ball

Solution

I optimization problem in condition 4 is separable; solution for λ ≥ 0 is

xk =


ak − λ ak ≥ λ
0 −λ ≤ ak ≤ λ
ak + λ ak ≤ −λ

I therefore ‖x‖1 =
∑

k |xk| =
∑

kmax{0, |ak| − λ}
I if ‖a‖1 ≤ 1, solution is λ = 0, x = a

I otherwise, solve piecewise-linear equation in λ:

n∑
k=1

max{0, |ak| − λ} = 1
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Perturbation and sensitivity analysis
(Unperturbed) optimization problem and its dual

minimize f0(x) maximize g(λ, ν)

subject to fi(x) ≤ 0, i = 1, . . . ,m subject to λ � 0

hi(x) = 0, i = 1, . . . , p

Perturbed problem and its dual

minimize f0(x) maximize g(λ, ν)− u>λ− v>ν
subject to fi(x) ≤ ui, i = 1, . . . ,m subject to λ � 0

hi(x) = vi, i = 1, . . . , p

I x is primal variable; u, v are parameters

I p?(u, v) is optimal value as a function of u, v

I we are interested in information about p?(u, v) that we can obtain from the
solution of the unperturbed problem and its dual
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Global sensitivity result

I assume strong duality holds for unperturbed problem, and that λ?, ν? are dual
optimal for unperturbed problem

I apply weak duality to perturbed problem:

p?(u, v) ≥ g(λ?, ν?)− u>λ? − v>ν?

= p?(0, 0)− u>λ? − v>ν?

Sensitivity interpretation

I if λ?i is large: p? increases greatly if we tighten constraint i (ui < 0)

I if λ?i is small: p? does not decrease much if we loosen constraint i (ui > 0)

I if ν?i is large and positive: p? increases greatly if we take vi < 0);
if ν?i is large and negative: p? increases greatly if we take vi > 0)

I if ν?i is small and positive: p? does not decrease much if we take vi > 0);
if ν?i is small and negative: p? does not decrease much if we take vi < 0)
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Local sensitivity result
if (in addition) p?(u, v) is differentiable at (0, 0), then

λ?i = −
∂p?(0, 0)

∂ui
, ν?i = −∂p

?(0, 0)

∂vi

proof (for λ?i ): from global sensitivity result,

∂p?(0, 0)

∂ui
= lim

t↘0

p?(tei, 0)− p?(0, 0)
t

≥ −λ?i

∂p?(0, 0)

∂ui
= lim

t↗0

p?(tei, 0)− p?(0, 0)
t

≤ −λ?i

hence, equality

p?(u) for a problem with one
(inequality) constraint:
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Duality and problem reformulations

I equivalent formulations of a problem can lead to very different duals

I reformulating the primal problem can be useful when the dual is difficult to drive,
or uninteresting

Common reformulations

I introduce new variables and equality constraints

I make explicit constraints implicit or vice-versa

I transform objective or constraint functions
e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

I dual function is constant: g = infx L(x) = infx f0(Ax+ b) = p?

I we have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize f0(y) maximize b>ν − f∗0 (ν)
subject to Ax+ b− y = 0 subject to A>ν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− ν>y + ν>Ax+ b>ν)

=

{
−f∗0 (ν) + b>ν Aν = 0

−∞ otherwise
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Example: norm approximation
minimize ‖Ax− b‖ −→ minimize ‖y‖

subject to y = Ax− b
Dual function

g(ν) = inf
x,y

(‖y‖+ ν>y − ν>Ax+ b>ν)

=

{
b>ν + infy(‖y‖+ ν>y) Aν = 0

−∞ otherwise

=

{
b>ν Aν = 0, ‖ν‖∗ ≤ 1

−∞ otherwise

(last step follows from (1))

Dual of norm approximation problem

maximize b>ν

subject to A>ν = 0

‖ν‖∗ ≤ 1 34 / 44



Implicit constraints
LP with box constraints: primal and dual problem

minimize c>x maximize − b>ν − 1>λ1 − 1>λ2

subject to Ax = b subject to c+A>ν + λ1 − λ2 = 0

− 1 � x � 1 λ1 � 0, λ2 � 0

Reformulation with box constraints made implicit

minimize f0(x) =

{
c>x −1 � x � 1

∞ otherwise

subject to Ax = b

dual function
g(ν) = inf

−1�x�1
(c>x+ ν>(Ax− b))

= − b>ν − ‖A>ν + c‖1
Dual problem: maximize −b>ν − ‖A>ν + c‖1
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Problems with generalized inequalities

minimize f0(x)

subject to fi(x) �Ki 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

�Ki is generalized inequality on Rki

Lagrangian and dual function: definitions are parallel to scalar case
I Lagrange multiplier for fi(x) �Ki 0 is vector λi ∈ Rki
I Lagrangian L : Rn × Rk1 × · · ·Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑
i=1

λ>i fi(x) +

p∑
i=1

νihi(x)

I dual function g : Rk1 × · · ·Rkm × Rp → R, is defined as

g(λ1, · · · , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)
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Lagrange dual of problems with generalized inequalities
Lower bound property: if λi �K∗

i
0, then g(λ1, . . . , λm, ν) ≤ p?

proof: if x is feasible and λ �K∗
i
0, then

f0(x) ≥ f0(x) +

m∑
i=1

λ>i fi(x) +

p∑
i=1

νihi(x)

≥ inf
x̃∈D

L(x̃, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x gives p? ≥ g(λ1, . . . , λm, ν)

Dual problem
maximize g(λ1, . . . , λm, ν)

subject to λi �K∗
i
0, i = 1, . . . ,m

I weak duality: p? ≥ d? always
I strong duality: p? = d? for convex problem with constraint qualification

(for example, Slater’s: primal problem is strictly feasible)
37 / 44



Semidefinite program

minimize c>x

subject to x1F1 + · · ·+ xnFn � G
matrices F1, . . . , Fn, G are symmetric k × k

Lagrangian and dual function
I Lagrange multiplier is matrix Z ∈ Sk; Lagrangian is

L(x, Z) = c>x+ tr(Z(x1F1 + · · ·+ xnFn −G))

=

n∑
i=1

(tr(FiZ) + ci)xi − tr(GZ)

I dual function

g(Z) = inf
x
L(x, Z) =

{
− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n

−∞ otherwise
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Dual semidefinite program

maximize − tr(GZ)

subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

Weak duality: p? ≥ d? always
proof: for primal feasible x, dual feasible Z,

c>x = −
n∑
i=1

tr(FiZ)xi

= − tr(GZ) + tr(Z(G−
n∑
i=1

xiFi))

≥ − tr(GZ)

inequality follows from tr(XZ) ≥ 0 for X � 0, Z � 0

Strong duality: p? = d? if primal SDP or dual SDP is strictly feasible
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Complementary slackness

(P) minimize c>x (D) maximize − tr(GZ)

subject to

n∑
i=1

xiFi � G subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

the primal and dual objective values at feasible x, Z are equal if

0 = c>x+ tr(GZ)

= −
n∑
i=1

xi tr(FiZ) + tr(GZ)

= tr(XZ) where X = G− x1F1 − · · · − xnFn
for X � 0, Z � 0, each of the following statements is equivalent to tr(XZ) = 0:
I ZX = 0: columns of X are in the nullspace of Z
I XZ = 0: columns of Z are in the nullspace of X

40 / 44



proof: factorize X,Z as
X = UU>, Z = V V >

I columns of U span the range of X, columns of V span the range of Z

I tr(XZ) can be expressed as

tr(XZ) = tr(UU>V V >) = tr((U>V )(V >U)) = ‖U>V ‖2F

I hence, tr(XZ) = 0 if and only if

U>V = 0

the range of X and the range of Z are orthogonal subspaces
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Example: two-way partitioning

recall the two-way partitioning problem and its dual

(P) minimize x>Wx (D) maximize − 1>ν

subject to x2i = 1, i = 1, . . . , n subject to W + diag(ν) � 0

I by weak duality, p? ≥ d?

I the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)

I to derive the dual of (D), we first write (D) as a minimization problem:

minimize 1>y

subject to W + diag(y) � 0
(2)

the optimal value of (2) is −d?
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Example: two-way partitioning
Lagrangian

L(y, Z) = 1>y − tr(Z(W + diag(y)))

= − tr(WZ) +

n∑
i=1

yi(1− Zii)

Dual function

g(Z) = inf
y
L(y, Z) =

{
− tr(WZ) Zii = 1, i = 1, . . . , n

−∞ otherwise

Dual problem: the dual of (2) is

maximize − tr(WZ)

subject to Zii = 1, i = 1, . . . , n

Z � 0

by strong duality with (2), optimal value is equal to −d?
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Example: two-way partitioning
replace (D) by its dual

(P) minimize x>Wx (P’) minimize tr(WZ)

subject to x2i = 1, i = 1, . . . , n subject to diag(Z) = 1

Z � 0

optimal value of (P’) is equal to optimal value d? of (D)

Interpretation as relaxation

I reformulate (P) by introducing a new variable Z = xx>:

minimize tr(WZ)

subject to diag(Z) = 1

Z = xx>

I replace the constraint Z = xx> with a weaker convex constraint Z � 0
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