CSED700H: Convex Optimization

Introduction¹

Namhoon Lee

POSTECH

Fall 2023

¹slides credits to Prof. Lieven Vandenberghe

Mathematical optimization

(Mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$

- $ightharpoonup x = (x_1, \dots, x_n) \in \mathbb{R}^n$: optimization variables
- $ightharpoonup f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}, \ i=1,\ldots,m$: constraint functions

solution x^{\star} has smallest value of f_0 among all vectors that satisfy the constraints

Examples

Portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

Device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

Data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

General optimization problem

- very difficult to solve
- ▶ methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably

- least squares problems
- ► linear programming problems
- convex optimization problems

Least squares

minimize
$$||Ax - b||_2^2$$

Solving least squares problems

- ▶ analytical solution: $x^* = (A^T A)^{-1} A^T b$ (if A has full column rank)
- reliable and efficient algorithms and software
- ightharpoonup computation time proportional to $pn^2(A\in\mathbb{R}^{p imes n})$; less if structured
- a mature technology

Using least squares

- least squares problems are easy to recognize
- ▶ a few standard techniques increase flexibility (e.g., weights, regularization)

Linear programming

minimize
$$c^{\top}x$$

subject to $a_i^{\top}x + b_i \leq 0, \quad i = 1, \dots, m$

Solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- ightharpoonup computation time (roughly) proportional to mn^2 if $m \ge n$; less with structure
- a mature technology

Using linear programming

- not as easy to recognize as least squares problems
- ▶ a few standard tricks used to convert problems into linear programs (e.g., problems involving l_1 or l_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$

objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

▶ includes least squares problems and linear programs as special cases

Convex optimization

Solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to

$$\max\{n^3, n^2m, F\},\$$

where F is cost of evaluating f_i 's and their first and second derivatives

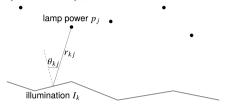
almost a technology

Using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

ightharpoonup n lamps illuminating m (small, flat) patches



▶ intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^{n} a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

Problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,\dots,m} |\log I_k - \log I_{\mathsf{des}}|$$

subject to $0 \le p_j \le p_{\mathsf{max}}, \quad j = 1,\dots,n$

How to solve?

- 1. use uniform power: $p_i = p$, vary p
- 2. use least squares: solve

minimize
$$\sum_{k=1}^{m} (I_k - I_{\mathsf{des}})^2$$

and round p_i if $p_i > p_{\text{max}}$ or $p_i < 0$

3. use weighted least squares:

minimize
$$\sum_{k=1}^{m} (I_k - I_{\text{des}})^2 + \sum_{j=1}^{n} w_j (p_j - p_{\text{max}}/2)^2$$

iteratively adjust weights w_i until $0 \le p_i \le p_{\text{max}}$

4. use linear programming:

minimize
$$\max_{k=1,...,m} |I_k - I_{\mathsf{des}}|$$

subject to $0 \le p_j \le p_{\mathsf{max}}, \quad j = 1,...,n$

which can be solved via linear programming

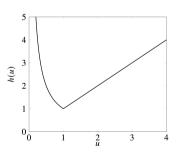
of course these are approximate (suboptimal) "solutions"

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,\dots,m} h(I_k/I_{\mathsf{des}})$$

subject to $0 \le p_j \le p_{\mathsf{max}}, \quad j=1,\dots,n$

with $h(u) = \max\{u, 1/u\}$



 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

Additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_i > 0)$
- ▶ answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Course goals and topics

Goals

- 1. recognize/formulate problems (such as the illumination problem) as convex optimization problems
- 2. develop code for problems of modest size (1000 lamps, 5000 patches)
- characterize optimal solution (optimal power distribution), give limits of performance, etc.

Topics

- 1. convex sets, functions, optimization problems, duality
- 2. examples and applications
- 3. algorithms

Nonlinear optimization

techniques for general nonconvex problems involve compromises

Local optimization methods (nonlinear programming)

- \blacktriangleright find a point that minimizes f_0 among feasible points near it
- ► fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

Global optimization methods

- ▶ find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Brief history of convex optimization

Theory (convex analysis): 1900-1970

Algorithms

- ▶ 1947: simplex algorithm for linear programming (Dantzig)
- ▶ 1970s: ellipsoid method, other subgradient methods
- ▶ 1980s and 1990s: polynomial-time interior-point methods for convex optimization (Karmakar 1984, Nesterov & Nemirovski 1994)
- ▶ since 2000s: many methods for large-scale convex optimization

Applications

- before 1990: mostly in operations research, a few in engineering
- ▶ since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- ▶ since 2000s: machine learning and statistics