CSED700H: Convex Optimization
 Mathematical background ${ }^{1}$

Namhoon Lee
POSTECH
Fall 2023

[^0]
Table of Contents

Norms

Analysis

Functions

Derivatives

Linear algebra

Table of Contents

Norms

Analysis

Functions

Derivatives

Linear algebra

Inner product, Euclidean norms, and angle

- standard inner product for $x, y \in \mathbb{R}^{n}$

$$
\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

- Euclidean norm or l_{2}-norm of a vector $x \in \mathbb{R}^{n}$

$$
\|x\|_{2}=\left(x^{\top} x\right)^{1 / 2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

- Cauchy-Schwartz inequality for any $x, y \in \mathbb{R}^{n}$

$$
\left|x^{\top} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

- (unsigned) angle between nonzero vectors $x, y \in \mathbb{R}^{n}$

$$
\angle(x, y)=\cos ^{-1}\left(\frac{x^{\top} y}{\|x\|_{2}\|y\|_{2}}\right)
$$

where $\cos ^{-1}(u) \in[0, \pi] ; x$ and y are orthogonal if $x^{\top} y=0$

- standard inner product on $\mathbb{R}^{m \times n}$ for $X, Y \in \mathbb{R}^{m \times n}$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}
$$

- Frobenius norm of a matrix $X \in \mathbb{R}^{m \times n}$

$$
\|X\|_{\mathrm{F}}=\left(\operatorname{tr}\left(X^{\top} X\right)\right)^{1 / 2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}
$$

standard inner product on \mathbb{S}^{n}

$$
\langle X, Y\rangle=\operatorname{tr}(X Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j} Y_{i j}=\sum_{i=1}^{n} X_{i i} Y_{i i}+2 \sum_{i<j} X_{i j} Y_{i j}
$$

Norms

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\operatorname{dom} f=\mathbb{R}^{n}$ is called a norm if
- f is nonnegative: $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$
- f is definite: $f(x)=0$ only if $x=0$
- f is homogeneous: $f(t x)=|t| f(x)$, for all $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$
- f satisfies the triangle inequality: $f(x+y) \leq f(x)+f(y)$, for all $x, y \in \mathbb{R}^{n}$
- $f(x)=\|x\|$ suggests that a norm is a generalization of the absolute value on \mathbb{R}.
- When we specify a particular norm, we use the notation $\|x\|_{\text {symb }}$.

Distance

- A norm is a measure of the length of a vector x.
- We can measure the distance between two vectors x and y as the length of their difference, i.e.,

$$
\operatorname{dist}(x, y)=\|x-y\|
$$

Unit ball

- unit ball of the norm $\|\cdot\|$

$$
\mathcal{B}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}
$$

- The unit ball satisfies the following properties:
- \mathcal{B} is symmetric about the origin, i.e., $x \in \mathcal{B}$ if and only if $-x \in \mathcal{B}$
- \mathcal{B} is convex
- \mathcal{B} is closed, bounded, and has nonempty interior
- Conversely, if $C \subseteq \mathbb{R}^{n}$ is any set satisfying these three conditions, then it is the unit ball of a norm

$$
\|x\|=(\sup \{t \geq 0 \mid t x \in \mathbb{C}\})^{-1}
$$

Examples

- absolute value on \mathbb{R}
- l_{p}-norm on \mathbb{R}^{n}

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

- $p=2:\|x\|_{2}=\left(x^{\top} x\right)^{1 / 2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$
- $p=1:\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
- $p=\infty:\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right\}$
- P-quadratic norms for $P \in \mathbb{S}_{++}^{n}$

$$
\|x\|_{P}=\left(x^{\top} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}
$$

- The unit ball of a quadratic norm is an ellipsoid (and conversely, if the unit ball of a norm is an ellipsoid, the norm is a quadratic norm).
- Frobenius norm on $\mathbb{R}^{m \times n}$

$$
\|X\|_{\mathrm{F}}=\left(\operatorname{tr}\left(X^{\top} X\right)\right)^{1 / 2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}
$$

- sum-absolute-value norm

$$
\|X\|_{\text {sav }}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

- maximum-absolute-value norm

$$
\|X\|_{\text {mav }}=\max \left\{\left|X_{i j}\right| \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

Equivalence of norms

- Suppose that $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms on \mathbb{R}^{n}. A basic result of analysis is that there exist positive constants α and β such that, for all $x \in \mathbb{R}^{n}$,

$$
\alpha\|x\|_{a} \leq\|x\|_{b} \leq \beta\|x\|_{a}
$$

This means that the norms are equivalent, i.e., they define the same set of open subsets, the same set of convergent sequences, and so on.

- Using convex analysis, we can give a more specific result: If $\|\cdot\|$ is any norm on \mathbb{R}^{n}, then there exists a quadratic norm $\|\cdot\|_{P}$ for which

$$
\|x\|_{P} \leq\|x\| \leq \sqrt{n}\|x\|_{P}
$$

holds for all x. In other words, any norm on \mathbb{R}^{n} can be uniformly approximated, within a factor of \sqrt{n}, by a quadratic norm.

Operator norms

- Suppose $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms on \mathbb{R}^{m} and \mathbb{R}^{n}, respectively. We define the operator norm of $X \in \mathbb{R}^{m \times n}$, induced by the norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, as

$$
\|X\|_{a, b}=\sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}
$$

- When $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are both Euclidean norms, the operator norms of X is its maximum singular value, and is denoted $\|X\|_{2}$:

$$
\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2}
$$

This norm is also called the spectral norm or l_{2}-norm of X.

- max-row-sum norm

$$
\|X\|_{\infty}=\sup \left\{\|X u\|_{\infty} \mid\|u\|_{\infty} \leq 1\right\}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

- max-column-sum norm

$$
\|X\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|X_{i j}\right|
$$

Dual norm

- Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{\top} x \mid\|x\| \leq 1\right\}
$$

- The dual norm can be interpreted as the operator norm of z^{\top}, interpreted as a $1 \times n$ matrix, with the norm $\|\cdot\|$ on \mathbb{R}^{n}, and the absolute value on \mathbb{R} :

$$
\|z\|_{*}=\sup \left\{\left|z^{\top} x\right| \mid\|x\| \leq 1\right\} .
$$

- From the definition of dual norm we have the inequality

$$
z^{\top} x \leq\|x\|\|z\|_{*},
$$

which holds for all x and z.

- The dual norm of the dual norm is the original norm, i.e., $\|x\|_{* *}=\|x\|$ for all x.
- The dual of the Euclidean norm is the Euclidean norm, since

$$
\sup \left\{z^{\top} x \mid\|x\|_{2} \leq 1\right\}=\|z\|_{2}
$$

(This follows from the Cauchy-Schwarz inequality; for nonzero z, the value of x that maximizes $z^{\top} x$ over $\|x\|_{2} \leq 1$ is $z /\|z\|_{2}$.)

- The dual of the l_{∞}-norm is the l_{1}-norm:

$$
\sup \left\{z^{\top} x \mid\|x\|_{\infty} \leq 1\right\}=\sum_{i=1}^{n}\left|z_{i}\right|=\|z\|_{1}
$$

and the dual of the l_{1}-norm is the l_{∞}-norm.

- More generally, the dual of the l_{p}-norm is the l_{q}-norm, where q satisfies $1 / p+1 / q=1$, i.e., $q=p /(p-1)$.
- For l_{2} - or spectral norm on $\mathbb{R}^{m \times n}$, the associated dual norm is

$$
\|Z\|_{2 *}=\sup \left\{\operatorname{tr}\left(Z^{\top} X\right) \mid\|X\|_{2} \leq 1\right\}
$$

which turns out to be the sum of the singular values,

$$
\|Z\|_{2 *}=\sigma_{1}(Z)+\cdots+\sigma_{r}(Z)=\operatorname{tr}\left(Z^{\top} Z\right)^{1 / 2}
$$

where $r=\operatorname{rank} Z$. This norm is sometimes called the nuclear norm.

Table of Contents

Norms

Analysis

Functions

Derivatives

Linear algebra

Interior

- An element $x \in \mathbb{C} \subseteq \mathbb{R}^{n}$ is called an interior point of \mathbb{C} if there exists an $\epsilon>0$ for which

$$
\left\{y \mid\|y-x\|_{2} \leq \epsilon\right\} \subseteq \mathbb{C}
$$

i.e., there exists a ball centered at x that lies entirely in \mathbb{C}.

- The set of all points interior to \mathbb{C} is called the interior of \mathbb{C} and is denoted int \mathbb{C}.

Closure

- The closure of a set \mathbb{C} is defined as

$$
\operatorname{cl} \mathbb{C}=\mathbb{R}^{n} \backslash \operatorname{int}\left(\mathbb{R}^{n} \backslash \mathbb{C}\right)
$$

i.e., the complement of the interior of the complement of \mathbb{C}.

- A point x is in the closure of \mathbb{C} if for every $\epsilon>0$, there is a $y \in \mathbb{C}$ with $\|x-y\|_{2} \leq \epsilon$.

Boundary

- The boundary of the set \mathbb{C} is defined as

$$
\operatorname{bd} \mathbb{C}=\operatorname{cl} \mathbb{C} \backslash \operatorname{int} \mathbb{C}
$$

- A boundary point x (i.e., a point $x \in \operatorname{bd} \mathbb{C}$) satisfies the following property: For all $\epsilon>0$, there exists $y \in \mathbb{C}$ and $z \notin \mathbb{C}$ with

$$
\|y-x\|_{2} \leq \epsilon, \quad\|z-x\|_{2} \leq \epsilon
$$

i.e., there exist arbitrarily close points in \mathbb{C}, and also arbitrarily close points not in \mathbb{C}.

Open and closed sets

- A set \mathbb{C} is open if $\operatorname{int} \mathbb{C}=\mathbb{C}$, i.e., every point in \mathbb{C} is an inteior point.
- A set $\mathbb{C} \subseteq \mathbb{R}^{n}$ is closed if its complement $\mathbb{R}^{n} \backslash \mathbb{C}=\left\{x \in \mathbb{R}^{n} \mid x \notin \mathbb{C}\right\}$ is open.
- A set \mathbb{C} is closed if and only if it contains the limit point of every convergent sequence in it. In other words, if x_{1}, x_{2}, \ldots converges to x, and $x_{i} \in \mathbb{C}$, then $x \in \mathbb{C}$. The closure of \mathbb{C} is the set of all limit points of convergent sequences in \mathbb{C}.
- A set \mathbb{C} is closed if it contains its boundary, i.e., bd $\mathbb{C} \subseteq \mathbb{C}$. It is open if it contains no boundary points, i.e., $\mathbb{C} \cap \operatorname{bd} \mathbb{C}=\emptyset$

Supremum

- Suppose $\mathbb{C} \subseteq \mathbb{R}$. A number a is an upper bound on \mathbb{C} if for each $x \in \mathbb{C}, x \leq a$.
- Then the set of upper bounds on a set \mathbb{C} is either
- empty (in which case we say \mathbb{C} is unbounded above),
- all of \mathbb{R} (only when $\mathbb{C}=\emptyset$), or
- a closed infinite interval $[b, \infty)$.
- The number b is called the least upper bound or supremum of the set \mathbb{C}, and is denoted $\sup \mathbb{C}$.
- We take $\sup \emptyset=-\infty$, and $\sup \mathbb{C}=\infty$ if \mathbb{C} is unbounded above.
- When the set \mathbb{C} is finite, $\sup \mathbb{C}$ is the maximum of its elements.

Infimum

- A number a is a lower bound on $\mathbb{C} \subseteq \mathbb{R}$ if for each $x \in \mathbb{C}, a \leq x$.
- The infimum (or greatest lower bound) of a set $\mathbb{C} \subseteq \mathbb{R}$ is defined as $\inf \mathbb{C}=-\sup (-\mathbb{C})$.
- When \mathbb{C} is finite, the infimum is the minimum of its elements.
- We take $\inf \emptyset=\infty$, and $\inf \mathbb{C}=-\infty$ if \mathbb{C} is unbounded below, i.e., has no lower bound.

Table of Contents

Norms

Analysis

Functions

Derivatives

Linear algebra

Function notation

- f is a function on the set $\operatorname{dom} f \subseteq A$ into the set B

$$
f: A \rightarrow B
$$

the notation indicates syntax, not the domain of function

- for example

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

f maps (some) n-vectors into m-vectors; it does not mean that $f(x)$ is defined for every $x \in \mathbb{R}^{n}$.

- another example, $f: \mathbb{S}^{n} \rightarrow \mathbb{R}$

$$
f(X)=\log \operatorname{det} X
$$

with $\operatorname{dom} f=\mathbb{S}_{++}^{n}$

Continuity

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $x \in \operatorname{dom} f$ if for all $\epsilon>0$ there exists a δ such that

$$
y \in \operatorname{dom} f, \quad\|y-x\|_{2} \leq \delta \Rightarrow\|f(y)-f(x)\|_{2} \leq \epsilon
$$

- Continuity can be described in terms of limits: whenever the sequence x_{1}, x_{2}, \ldots in $\operatorname{dom} f$ converges to a point $x \in \operatorname{dom} f$, the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$ converges to $f(x)$, i.e.,

$$
\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f\left(\lim _{i \rightarrow \infty} x_{i}\right) .
$$

- A function f is continuous if it is continuous at every point in its domain.

Closed functions

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be closed if, for each $\alpha \in \mathbb{R}$, the sublevel set

$$
\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

is closed.

- This is equivalent to the condition that the epigraph of f,

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

is closed.

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, and $\operatorname{dom} f$ is closed, then f is closed. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continous, with dom f open, then f is closed if and only if f converges to ∞ along every sequence converging to a boundary point of $\operatorname{dom} f$. In other words, if $\lim _{i \rightarrow \infty} x_{i}=x \in \operatorname{bd} \operatorname{dom} f$, with $x_{i} \in \operatorname{dom} f$, we have $\lim _{i \rightarrow \infty} f\left(x_{i}\right)=\infty$.

Examples on \mathbb{R}

- The function $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(x)=x \log x, \operatorname{dom} f=\mathbb{R}_{++}$, is not closed.
- The function $f: \mathbb{R} \rightarrow \mathbb{R}$, with

$$
f(x)=\left\{\begin{array}{ll}
x \log x & x>0 \\
0 & x=0,
\end{array} \quad \operatorname{dom} f=\mathbb{R}_{+}\right.
$$

is closed.

- The function $f(x)=-\log x, \operatorname{dom} f=\mathbb{R}_{++}$is closed.

Table of Contents

Norms

Analysis

Functions

Derivatives

Linear algebra

Derivative

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $x \in \operatorname{int} \operatorname{dom} f$. The function f is differentiable at x if there exists a matrix $D f(x) \in \mathbb{R}^{m \times n}$ that satisfies

$$
\lim _{z \in \operatorname{dom} f, z \neq x, z \rightarrow x} \frac{\|f(z)-f(x)-D f(x)(z-x)\|_{2}}{\|z-x\|_{2}}=0
$$

in which case we refer to $D f(x)$ as the derivative (or Jacobian) of f at x.

- The function f is differentiable if $\operatorname{dom} f$ is open, and it is differentiable at every point in its domain.
- The affine function of z given by

$$
f(x)+D f(x)(z-x)
$$

is called the first-order approximation of f at (or near) x.

- The derivative can be found by deriving the first-order approximation of the function f at x, or from partial derivatives:

$$
D f(x)_{i j}=\frac{\partial f_{i}(x)}{\partial x_{j}}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

Gradient

- When f is real-valued (i.e., $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$) the derivative $D f(x)$ is a $1 \times n$ matrix, i.e., it is a row vector. Its transpose is called the gradient of the function:

$$
\nabla f(x)=D f(x)^{\top}
$$

which is a (column) vector, i.e., in \mathbb{R}^{n}.

- Its components are the partial derivatives of f :

$$
\nabla f(x)_{i}=\frac{\partial f(x)}{\partial x_{i}}, \quad i=1, \ldots, n
$$

- The first-order approximation of f at a point $x \in \operatorname{int} \operatorname{dom} f$ can be expressed as (the affine function of z)

$$
f(x)+\nabla f(x)^{\top}(z-x) .
$$

Chain rule

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $x \in \operatorname{int} \operatorname{dom} f$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is differentiable at $f(x) \in \operatorname{int} \operatorname{dom} g$. Define the composition $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ by $h(z)=g(f(z))$. Then h is differentiable at x, with derivative

$$
D h(x)=D g(f(x)) D f(x)
$$

- As an example, suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$, and $h(x)=g(f(x))$. Taking the transpose of $D h(x)=D g(f(x)) D f(x)$ yields
$\nabla h(x)=g^{\prime}(f(x)) \nabla f(x)$.

Second derivative

- The second derivative or Hessian matrix of f at $x \in \operatorname{int} \operatorname{dom} f$, denoted $\nabla^{2} f(x)$, is given by

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i=1, \ldots, n, \quad j=1, \ldots, n
$$

provided f is twice differentiable at x, where the partial derivatives are evaluated at x.

- The second derivative can be interpreted as the derivative of the first derivative. If f is differentiable, the gradient mapping is the function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $\operatorname{dom} \nabla f=\operatorname{dom} f$, with value $\nabla f(x)$ at x. The derivative of this mapping is

$$
D \nabla f(x)=\nabla^{2} f(x)
$$

Table of Contents

Norms
Analysis
Functions
Derivatives
Linear algebra

Range and nullspace

Let $A \in \mathbb{R}^{m \times n}$.

- The range of A is the set of all vectors in \mathbb{R}^{m} that can be written as linear combinations of the colums of A, i.e.,

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\}
$$

- The range $\mathcal{R}(A)$ is a subspace of \mathbb{R}^{m}. Its dimension is the rank of A. The rank of A can never be greater than the minimum of m and n.
- The nullspace of A is the set of all vectors x mapped into zero by A :

$$
\mathcal{N}(A)=\{x \mid A x=0\}
$$

- The nullspace is a subspace of \mathbb{R}^{n}.

Orthogonal decomposition induced by A

- If \mathcal{V} is a subspace of \mathbb{R}^{n}, its orthogonal complement is defined as

$$
\mathcal{V}^{\perp}=\left\{x \mid z^{\top} x=0 \text { for all } z \in \mathcal{V}\right\}
$$

- A basic result of linear algebra is that, for any $A \in \mathbb{R}^{m \times n}$, we have

$$
\mathcal{N}(A)=\mathcal{R}\left(A^{\top}\right)^{\perp}
$$

- This result is often stated as

$$
\mathcal{N}(A) \stackrel{\perp}{\oplus} \mathcal{R}\left(A^{\top}\right)=\mathbb{R}^{n}
$$

Here the symbol $\stackrel{\perp}{\oplus}$ refers to orthogonal direct sum, i.e., the sum of two subspaces that are orthogonal. The decomposition is called the orthogonal decomposition induced by A.

Symmetric eigenvalue decomposition

- Suppose $A \in \mathbb{S}^{n}$. Then A can be factored as

$$
A=Q \Lambda Q^{\top}
$$

where $Q \in \mathbb{R}^{n \times n}$ is orthogonal, i.e., satisfies $Q^{\top} Q=I$, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- The (real) numbers λ_{i} are the eigenvalues of A, and are the roots of the characteristic polynomial $\operatorname{det}(s I-A)$.
- The columns of Q form an orthonormal set of eigenvectors of A.
- The factorization is called the spectral decomposition or (symmetric) eigenvalue decomposition of A.
- The determinant and trace can be expressed in terms of the eigenvalues,

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i},
$$

as can the spectral and Frobenius norms,

$$
\|A\|_{2}=\max _{i=1, \ldots, n}\left|\lambda_{i}\right|=\max \left\{\lambda_{1},-\lambda_{n}\right\}, \quad\|A\|_{F}=\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)^{1 / 2}
$$

Definiteness and matrix inequalities

- The largest and smallest eigenvalues satisfy

$$
\lambda_{\max }(A)=\sup _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}, \quad \lambda_{\min }(A)=\inf _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x} .
$$

- A matrix $A \in \mathbb{S}^{n}$ is called positive definite, denoted as $A \succ 0$, if for all $x \neq 0$, $x^{\top} A x>0$. By the inequality above, we see that $A \succ 0$ if and only all its eigenvalues are positive, i.e., $\lambda_{\min }(A)>0$. If $-A$ is positive definite, we say A is negative definite, which we write as $A \prec 0$.
- If A satisfies $x^{\top} A x \geq 0$ for all x, we say that A is positive semidefinite or nonnegative definite. If $-A$ is nonnegative definite, i.e., if $x^{\top} A x \leq 0$ for all x, we say that A is negative semidefinite or nonpositive definite.
- For $A, B \in \mathbb{S}^{n}$, we use $A \prec B$ to mean $B-A \succ 0$, and so on. These inequalities are called matrix inequalities, or generalized inequalities associated with the positive semidefinite cone.

Symmeric squareroot

- Let $A \in \mathbb{S}_{+}^{n}$, with eigenvalue decomposition $A=Q \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) Q^{\top}$. We define the (symmetric) squareroot of A as

$$
A^{1 / 2}=Q \operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{n}^{1 / 2}\right) Q^{\top} .
$$

The squareroot $A^{1 / 2}$ is the unique symmetric positive semidefinite solution of the equation $X^{2}=A$.

Generalized eigenvalue decomposition

- The generalized eigenvalue of a pair of symmetric matrices $(A, B) \in \mathbb{S}^{n} \times \mathbb{S}^{n}$ are defined as the roots of the polynomial $\operatorname{det}(s B-A)$.
- We are usually interested in matrix pairs with $B \in \mathbb{S}_{++}^{n}$. In this case the generalized eigenvalues are also the eigenvalues of $B^{-1 / 2} A B^{-1 / 2}$ (which are real). As with the standard eigenvalue decomposition, we order the generalized eigenvalues in nonincreasing order, as $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, and denote the maximum generalized eigenvalue by $\lambda_{\max }(A, B)$.
- When $B \in \mathbb{S}_{++}^{n}$, the pair of matrices can be factored as

$$
A=V \Lambda V^{\top}, \quad B=V V^{\top}
$$

where $V \in \mathbb{R}^{n \times n}$ is nonsingular, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where λ_{i} are the generalized eigenvalues of the pair (A, B). The decomposition is called the generalized eigenvalue decomposition.

- The generalized eigenvalue decomposition is related to the standard eigenvalue decomposition of the matrix $B^{-1 / 2} A B^{-1 / 2}$. If $Q \Lambda Q^{\top}$ is the eigenvalue decomposition of $B^{-1 / 2} A B^{-1 / 2}$, then the above holds with $V=B^{1 / 2} Q$.

Singular value decomposition

- Suppose $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank} A=r$. Then A can be factored as

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times r}$ satisfies $U^{\top} U=I, V \in \mathbb{R}^{n \times r}$ satisfies $V^{\top} V=I$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$.

- The columns of U are called left singular vectors of A, the columns of V are right singular vectors, and the numbers σ_{i} are the singular values.
- The singular value decomposition can be written

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

where $u_{i} \in \mathbb{R}^{m}$ are the left singular vectors, and $v_{i} \in \mathbb{R}^{n}$ are the right singular vectors.

- The singular value decomposition of a matrix A is closely related to the eigenvalue decomposition of the (symmetric, nonnegative definite) matrix $A^{\top} A$.

$$
A^{\top} A=V \Sigma^{2} V^{\top}=\left[\begin{array}{ll}
V & \tilde{V}
\end{array}\right]\left[\begin{array}{cc}
\Sigma^{2} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
V & \tilde{V}
\end{array}\right]^{\top}
$$

where \tilde{V} is any matrix for which $\left[\begin{array}{ll}V & \tilde{V}\end{array}\right]$ is orthogonal.

- The righthand expression is the eigenvalue decomposition of $A^{\top} A$, so we conclude that its nonzero eigenvalues are the singular values of A squared, and the associated eigenvectors of $A^{\top} A$ are the right singular vectors of A.
- A similar analysis of $A A^{\top}$ shows that its nonzero eigenvalues are also the squares of the singular values of A, and the associated eigenvectors are the left singular vectors of A.
- The first or largest singular value is also written as $\sigma_{\max }(A)$. It can be expressed as

$$
\sigma_{\max }(A)=\sup _{x, y \neq 0} \frac{x^{\top} A y}{\|x\|_{2}\|y\|_{2}}=\sup _{y \neq 0} \frac{\|A y\|_{2}}{\|y\|_{2}}
$$

The righthand expression shows that the maximum singular value is the l_{2} operator norm of A.

- The minimum singular value of $A \in \mathbb{R}^{m \times n}$ is given by

$$
\sigma_{\min }(A)= \begin{cases}\sigma_{r}(A) & r=\min \{m, n\} \\ 0 & r<\min \{m, n\}\end{cases}
$$

which is positive if and only if A is full rank.

- The singular values of a symmetric matrix are the absolute values of its nonzero eigenvalues, sorted into descending order. The singular values of a symmetric positive semidefinite matrix are the same as its nonzero eigenvalues.
- The condition number of a nonsingular $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{cond}(A)$ or $\kappa(A)$, is defined as

$$
\operatorname{cond}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\sigma_{\max }(A) / \sigma_{\min }(A)
$$

Pseudo-inverse

- Let $A=U \Sigma V^{\top}$ be the singular value decomposition of $A \in \mathbb{R}^{m \times n}$, with $\operatorname{rank} A=r$. We define the pseudo-inverse or Moore-Penrose inverse of A as

$$
A^{\dagger}=V \Sigma^{-1} U^{\top} \in \mathbb{R}^{n \times m}
$$

- Alternative expresions are

$$
A^{\dagger}=\lim _{\epsilon \rightarrow 0}\left(A^{\top} A+\epsilon I\right)^{-1} A^{\top}=\lim _{\epsilon \rightarrow 0} A^{\top}\left(A A^{\top}+\epsilon I\right)^{-1}
$$

where the limits are taken with $\epsilon>0$, which ensures that the inverses in the expressions exist. If $\operatorname{rank} A=m$, then $A^{\dagger}=A^{\top}\left(A A^{\top}\right)^{-1}$. If A is square and nonsingular, then $A^{\dagger}=A^{-1}$.

- The pseudo-inverse comes up in problems involving least-squares, minimum norm, quadratic minimization, and (Euclidean) projection. For example, $A^{\dagger} b$ is a solution of the least-squares problem

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

in general. When the solution is not unique, $A^{\dagger} b$ gives the solution with minimum (Euclidean) norm. As another example, the matrix $A A^{\dagger}=U U^{\top}$ gives (Euclidean) projection on $\mathcal{R}(A)$. The matrix $A^{\dagger} A=V V^{\top}$ gives (Euclidean) projection on $\mathcal{R}\left(A^{\top}\right)$.

- The optimal value p^{\star} of the (general, nonconvex) quadratic optimization problem

$$
\operatorname{minimize} \quad(1 / 2) x^{\top} P x+q^{\top} x+r,
$$

where $P \in \mathbb{S}^{n}$, can be expressed as

$$
p^{\star}= \begin{cases}-(1 / 2) q^{\top} P^{\dagger} q+r & P \succeq 0, \quad q \in \mathcal{R}(P) \\ -\infty & \text { otherwise }\end{cases}
$$

(This generalizes the expression $p^{\star}=-(1 / 2) q^{\top} P^{-1} q+r$, valid for $P \succ 0$.)

[^0]: ${ }^{1}$ These slides are created based on Appendix A in Convex Optimization by Boyd and Vandenberghe.

