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Inner product, Euclidean norms, and angle
I standard inner product for x, y ∈ Rn

〈x, y〉 = x>y =

n∑
i=1

xiyi

I Euclidean norm or l2-norm of a vector x ∈ Rn

‖x‖2 = (x>x)1/2 = (x21 + · · ·+ x2n)1/2

I Cauchy-Schwartz inequality for any x, y ∈ Rn

|x>y| ≤ ‖x‖2‖y‖2
I (unsigned) angle between nonzero vectors x, y ∈ Rn

∠(x, y) = cos−1
(

x>y

‖x‖2‖y‖2

)
where cos−1(u) ∈ [0, π]; x and y are orthogonal if x>y = 0
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I standard inner product on Rm×n for X,Y ∈ Rm×n

〈X,Y 〉 = tr(X>Y ) =

m∑
i=1

n∑
j=1

XijYij

I Frobenius norm of a matrix X ∈ Rm×n

‖X‖F =
(

tr(X>X)
)1/2

=

(
m∑
i=1

n∑
j=1

X2
ij

)1/2

I standard inner product on Sn

〈X,Y 〉 = tr(XY ) =
n∑
i=1

n∑
j=1

XijYij =

n∑
i=1

XiiYii + 2
∑
i<j

XijYij
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Norms

I A function f : Rn → R with dom f = Rn is called a norm if
I f is nonnegative: f(x) ≥ 0 for all x ∈ Rn

I f is definite: f(x) = 0 only if x = 0
I f is homogeneous: f(tx) = |t|f(x), for all x ∈ Rn and t ∈ R
I f satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y), for all x, y ∈ Rn

I f(x) = ‖x‖ suggests that a norm is a generalization of the absolute value on R.

I When we specify a particular norm, we use the notation ‖x‖symb.
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Distance

I A norm is a measure of the length of a vector x.

I We can measure the distance between two vectors x and y as the length of their
difference, i.e.,

dist(x, y) = ‖x− y‖.
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Unit ball

I unit ball of the norm ‖ · ‖

B = {x ∈ Rn | ‖x‖ ≤ 1}

I The unit ball satisfies the following properties:
I B is symmetric about the origin, i.e., x ∈ B if and only if −x ∈ B
I B is convex
I B is closed, bounded, and has nonempty interior

I Conversely, if C ⊆ Rn is any set satisfying these three conditions, then it is the
unit ball of a norm

‖x‖ = (sup{t ≥ 0 | tx ∈ C})−1.
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Examples

I absolute value on R
I lp-norm on Rn

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p

I p = 2: ‖x‖2 = (x>x)1/2 = (x21 + · · ·+ x2n)1/2

I p = 1: ‖x‖1 = |x1|+ · · ·+ |xn|
I p =∞: ‖x‖∞ = max{|x1|, · · · , |xn|}

I P -quadratic norms for P ∈ Sn++

‖x‖P = (x>Px)1/2 = ‖P 1/2x‖2

I The unit ball of a quadratic norm is an ellipsoid (and conversely, if the unit ball of a
norm is an ellipsoid, the norm is a quadratic norm).
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I Frobenius norm on Rm×n

‖X‖F =
(

tr(X>X)
)1/2

=

( m∑
i=1

n∑
j=1

X2
ij

)1/2

I sum-absolute-value norm

‖X‖sav =

m∑
i=1

n∑
j=1

|Xij |

I maximum-absolute-value norm

‖X‖mav = max{|Xij | | i = 1, . . . ,m, j = 1, . . . , n}
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Equivalence of norms

I Suppose that ‖ · ‖a and ‖ · ‖b are norms on Rn. A basic result of analysis is that
there exist positive constants α and β such that, for all x ∈ Rn,

α‖x‖a ≤ ‖x‖b ≤ β‖x‖a.

This means that the norms are equivalent, i.e., they define the same set of open
subsets, the same set of convergent sequences, and so on.

I Using convex analysis, we can give a more specific result: If ‖ · ‖ is any norm on
Rn, then there exists a quadratic norm ‖ · ‖P for which

‖x‖P ≤ ‖x‖ ≤
√
n‖x‖P

holds for all x. In other words, any norm on Rn can be uniformly approximated,
within a factor of

√
n, by a quadratic norm.
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Operator norms
I Suppose ‖ · ‖a and ‖ · ‖b are norms on Rm and Rn, respectively. We define the

operator norm of X ∈ Rm×n, induced by the norms ‖ · ‖a and ‖ · ‖b, as

‖X‖a,b = sup{‖Xu‖a | ‖u‖b ≤ 1}.
I When ‖ · ‖a and ‖ · ‖b are both Euclidean norms, the operator norms of X is its

maximum singular value, and is denoted ‖X‖2:

‖X‖2 = σmax(X) = (λmax(X
>X))1/2.

This norm is also called the spectral norm or l2-norm of X.
I max-row-sum norm

‖X‖∞ = sup{‖Xu‖∞ | ‖u‖∞ ≤ 1} = max
i=1,...,m

n∑
j=1

|Xij |

I max-column-sum norm

‖X‖1 = max
j=1,...,n

m∑
i=1

|Xij |
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Dual norm

I Let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted ‖ · ‖∗, is defined as

‖z‖∗ = sup{z>x | ‖x‖ ≤ 1}.

I The dual norm can be interpreted as the operator norm of z>, interpreted as a
1× n matrix, with the norm ‖ · ‖ on Rn, and the absolute value on R:

‖z‖∗ = sup{|z>x| | ‖x‖ ≤ 1}.

I From the definition of dual norm we have the inequality

z>x ≤ ‖x‖‖z‖∗,

which holds for all x and z.

I The dual norm of the dual norm is the original norm, i.e., ‖x‖∗∗ = ‖x‖ for all x.
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I The dual of the Euclidean norm is the Euclidean norm, since

sup{z>x | ‖x‖2 ≤ 1} = ‖z‖2.

(This follows from the Cauchy-Schwarz inequality; for nonzero z, the value of x
that maximizes z>x over ‖x‖2 ≤ 1 is z/‖z‖2.)

I The dual of the l∞-norm is the l1-norm:

sup{z>x | ‖x‖∞ ≤ 1} =

n∑
i=1

|zi| = ‖z‖1,

and the dual of the l1-norm is the l∞-norm.

I More generally, the dual of the lp-norm is the lq-norm, where q satisfies
1/p+ 1/q = 1, i.e., q = p/(p− 1).
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I For l2- or spectral norm on Rm×n, the associated dual norm is

‖Z‖2∗ = sup{tr(Z>X) | ‖X‖2 ≤ 1},

which turns out to be the sum of the singular values,

‖Z‖2∗ = σ1(Z) + · · ·+ σr(Z) = tr(Z>Z)1/2,

where r = rankZ. This norm is sometimes called the nuclear norm.
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Interior

I An element x ∈ C ⊆ Rn is called an interior point of C if there exists an ε > 0 for
which

{y | ‖y − x‖2 ≤ ε} ⊆ C,

i.e., there exists a ball centered at x that lies entirely in C.

I The set of all points interior to C is called the interior of C and is denoted intC.

17 / 47



Closure

I The closure of a set C is defined as

clC = Rn \ int(Rn \ C),

i.e., the complement of the interior of the complement of C.

I A point x is in the closure of C if for every ε > 0, there is a y ∈ C with
‖x− y‖2 ≤ ε.
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Boundary

I The boundary of the set C is defined as

bdC = clC \ intC.

I A boundary point x (i.e., a point x ∈ bdC) satisfies the following property: For all
ε > 0, there exists y ∈ C and z /∈ C with

‖y − x‖2 ≤ ε, ‖z − x‖2 ≤ ε,

i.e., there exist arbitrarily close points in C, and also arbitrarily close points not in
C.
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Open and closed sets

I A set C is open if intC = C, i.e., every point in C is an inteior point.

I A set C ⊆ Rn is closed if its complement Rn \ C = {x ∈ Rn | x /∈ C} is open.

I A set C is closed if and only if it contains the limit point of every convergent
sequence in it. In other words, if x1, x2, . . . converges to x, and xi ∈ C, then
x ∈ C. The closure of C is the set of all limit points of convergent sequences in C.

I A set C is closed if it contains its boundary, i.e., bdC ⊆ C. It is open if it
contains no boundary points, i.e., C ∩ bdC = ∅
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Supremum

I Suppose C ⊆ R. A number a is an upper bound on C if for each x ∈ C, x ≤ a.
I Then the set of upper bounds on a set C is either

I empty (in which case we say C is unbounded above),
I all of R (only when C = ∅), or
I a closed infinite interval [b,∞).

I The number b is called the least upper bound or supremum of the set C, and is
denoted supC.

I We take sup ∅ = −∞, and supC =∞ if C is unbounded above.

I When the set C is finite, supC is the maximum of its elements.
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Infimum

I A number a is a lower bound on C ⊆ R if for each x ∈ C, a ≤ x.

I The infimum (or greatest lower bound) of a set C ⊆ R is defined as
inf C = − sup(−C).

I When C is finite, the infimum is the minimum of its elements.

I We take inf ∅ =∞, and inf C = −∞ if C is unbounded below, i.e., has no lower
bound.
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Function notation

I f is a function on the set dom f ⊆ A into the set B

f : A→ B

the notation indicates syntax, not the domain of function

I for example
f : Rn → Rm

f maps (some) n-vectors into m-vectors; it does not mean that f(x) is defined
for every x ∈ Rn.

I another example, f : Sn → R

f(X) = log detX

with dom f = Sn++
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Continuity

I A function f : Rn → Rm is continuous at x ∈ dom f if for all ε > 0 there exists a
δ such that

y ∈ dom f, ‖y − x‖2 ≤ δ ⇒ ‖f(y)− f(x)‖2 ≤ ε.

I Continuity can be described in terms of limits: whenever the sequence x1, x2, . . .
in dom f converges to a point x ∈ dom f , the sequence f(x1), f(x2), . . .
converges to f(x), i.e.,

lim
i→∞

f(xi) = f( lim
i→∞

xi).

I A function f is continuous if it is continuous at every point in its domain.
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Closed functions

I A function f : Rn → R is said to be closed if, for each α ∈ R, the sublevel set

{x ∈ dom f | f(x) ≤ α}

is closed.

I This is equivalent to the condition that the epigraph of f ,

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t},

is closed.

I If f : Rn → R is continuous, and dom f is closed, then f is closed. If f : Rn → R
is continous, with dom f open, then f is closed if and only if f converges to ∞
along every sequence converging to a boundary point of dom f . In other words, if
limi→∞ xi = x ∈ bd dom f , with xi ∈ dom f , we have limi→∞ f(xi) =∞.
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Examples on R

I The function f : R→ R, with f(x) = x log x, dom f = R++, is not closed.

I The function f : R→ R, with

f(x) =

{
x log x x > 0

0 x = 0,
dom f = R+,

is closed.

I The function f(x) = − log x, dom f = R++ is closed.
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Derivative
I Suppose f : Rn → Rm and x ∈ int dom f . The function f is differentiable at x if

there exists a matrix Df(x) ∈ Rm×n that satisfies

lim
z∈dom f,z 6=x,z→x

‖f(z)− f(x)−Df(x)(z − x)‖2
‖z − x‖2

= 0,

in which case we refer to Df(x) as the derivative (or Jacobian) of f at x.
I The function f is differentiable if dom f is open, and it is differentiable at every

point in its domain.
I The affine function of z given by

f(x) +Df(x)(z − x)

is called the first-order approximation of f at (or near) x.
I The derivative can be found by deriving the first-order approximation of the

function f at x, or from partial derivatives:

Df(x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n.
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Gradient

I When f is real-valued (i.e., f : Rn → R) the derivative Df(x) is a 1× n matrix,
i.e., it is a row vector. Its transpose is called the gradient of the function:

∇f(x) = Df(x)>,

which is a (column) vector, i.e., in Rn.

I Its components are the partial derivatives of f :

∇f(x)i =
∂f(x)

∂xi
, i = 1, . . . , n.

I The first-order approximation of f at a point x ∈ int dom f can be expressed as
(the affine function of z)

f(x) +∇f(x)>(z − x).
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Chain rule

I Suppose f : Rn → Rm is differentiable at x ∈ int dom f and g : Rm → Rp is
differentiable at f(x) ∈ int dom g. Define the composition h : Rn → Rp by
h(z) = g(f(z)). Then h is differentiable at x, with derivative

Dh(x) = Dg(f(x))Df(x).

I As an example, suppose f : Rn → R, g : R→ R, and h(x) = g(f(x)). Taking the
transpose of Dh(x) = Dg(f(x))Df(x) yields

∇h(x) = g′(f(x))∇f(x).
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Second derivative

I The second derivative or Hessian matrix of f at x ∈ int dom f , denoted ∇2f(x),
is given by

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n,

provided f is twice differentiable at x, where the partial derivatives are evaluated
at x.

I The second derivative can be interpreted as the derivative of the first derivative. If
f is differentiable, the gradient mapping is the function ∇f : Rn → Rn, with
dom∇f = dom f , with value ∇f(x) at x. The derivative of this mapping is

D∇f(x) = ∇2f(x).
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Range and nullspace

Let A ∈ Rm×n.

I The range of A is the set of all vectors in Rm that can be written as linear
combinations of the colums of A, i.e.,

R(A) = {Ax | x ∈ Rn}.

I The range R(A) is a subspace of Rm. Its dimension is the rank of A. The rank of A
can never be greater than the minimum of m and n.

I The nullspace of A is the set of all vectors x mapped into zero by A:

N (A) = {x | Ax = 0}.

I The nullspace is a subspace of Rn.
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Orthogonal decomposition induced by A

I If V is a subspace of Rn, its orthogonal complement is defined as

V⊥ = {x | z>x = 0 for all z ∈ V}.

I A basic result of linear algebra is that, for any A ∈ Rm×n, we have

N (A) = R(A>)⊥.

I This result is often stated as

N (A)
⊥
⊕R(A>) = Rn.

Here the symbol
⊥
⊕ refers to orthogonal direct sum, i.e., the sum of two subspaces

that are orthogonal. The decomposition is called the orthogonal decomposition
induced by A.
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Symmetric eigenvalue decomposition

I Suppose A ∈ Sn. Then A can be factored as

A = QΛQ>,

where Q ∈ Rn×n is orthogonal, i.e., satisfies Q>Q = I, and Λ = diag(λ1, . . . , λn).

I The (real) numbers λi are the eigenvalues of A, and are the roots of the
characteristic polynomial det(sI −A).

I The columns of Q form an orthonormal set of eigenvectors of A.

I The factorization is called the spectral decomposition or (symmetric) eigenvalue
decomposition of A.
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I The determinant and trace can be expressed in terms of the eigenvalues,

detA =

n∏
i=1

λi, trA =

n∑
i=1

λi,

as can the spectral and Frobenius norms,

‖A‖2 = max
i=1,...,n

|λi| = max{λ1,−λn}, ‖A‖F =

( n∑
i=1

λ2i

)1/2

.
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Definiteness and matrix inequalities

I The largest and smallest eigenvalues satisfy

λmax(A) = sup
x 6=0

x>Ax

x>x
, λmin(A) = inf

x6=0

x>Ax

x>x
.

I A matrix A ∈ Sn is called positive definite, denoted as A � 0, if for all x 6= 0,
x>Ax > 0. By the inequality above, we see that A � 0 if and only all its
eigenvalues are positive, i.e., λmin(A) > 0. If −A is positive definite, we say A is
negative definite, which we write as A ≺ 0.

I If A satisfies x>Ax ≥ 0 for all x, we say that A is positive semidefinite or
nonnegative definite. If −A is nonnegative definite, i.e., if x>Ax ≤ 0 for all x, we
say that A is negative semidefinite or nonpositive definite.

I For A,B ∈ Sn, we use A ≺ B to mean B −A � 0, and so on. These inequalities
are called matrix inequalities, or generalized inequalities associated with the
positive semidefinite cone.
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Symmeric squareroot

I Let A ∈ Sn+, with eigenvalue decomposition A = Qdiag(λ1, . . . , λn)Q>. We
define the (symmetric) squareroot of A as

A1/2 = Qdiag(λ
1/2
1 , . . . , λ1/2n )Q>.

The squareroot A1/2 is the unique symmetric positive semidefinite solution of the
equation X2 = A.
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Generalized eigenvalue decomposition
I The generalized eigenvalue of a pair of symmetric matrices (A,B) ∈ Sn × Sn are

defined as the roots of the polynomial det(sB −A).
I We are usually interested in matrix pairs with B ∈ Sn++. In this case the

generalized eigenvalues are also the eigenvalues of B−1/2AB−1/2 (which are real).
As with the standard eigenvalue decomposition, we order the generalized
eigenvalues in nonincreasing order, as λ1 ≥ λ2 ≥ · · · ≥ λn, and denote the
maximum generalized eigenvalue by λmax(A,B).

I When B ∈ Sn++, the pair of matrices can be factored as

A = V ΛV >, B = V V >,

where V ∈ Rn×n is nonsingular, and Λ = diag(λ1, . . . , λn), where λi are the
generalized eigenvalues of the pair (A,B). The decomposition is called the
generalized eigenvalue decomposition.

I The generalized eigenvalue decomposition is related to the standard eigenvalue
decomposition of the matrix B−1/2AB−1/2. If QΛQ> is the eigenvalue
decomposition of B−1/2AB−1/2, then the above holds with V = B1/2Q.
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Singular value decomposition

I Suppose A ∈ Rm×n with rankA = r. Then A can be factored as

A = UΣV >,

where U ∈ Rm×r satisfies U>U = I, V ∈ Rn×r satisfies V >V = I, and
Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

I The columns of U are called left singular vectors of A, the columns of V are right
singular vectors, and the numbers σi are the singular values.

I The singular value decomposition can be written

A =
r∑
i=1

σiuiv
>
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular
vectors.
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I The singular value decomposition of a matrix A is closely related to the
eigenvalue decomposition of the (symmetric, nonnegative definite) matrix A>A.

A>A = V Σ2V > =
[
V Ṽ

] [Σ2 0
0 0

] [
V Ṽ

]>
,

where Ṽ is any matrix for which
[
V Ṽ

]
is orthogonal.

I The righthand expression is the eigenvalue decomposition of A>A, so we conclude
that its nonzero eigenvalues are the singular values of A squared, and the
associated eigenvectors of A>A are the right singular vectors of A.

I A similar analysis of AA> shows that its nonzero eigenvalues are also the squares
of the singular values of A, and the associated eigenvectors are the left singular
vectors of A.

42 / 47



I The first or largest singular value is also written as σmax(A). It can be expressed as

σmax(A) = sup
x,y 6=0

x>Ay

‖x‖2‖y‖2
= sup

y 6=0

‖Ay‖2
‖y‖2

.

The righthand expression shows that the maximum singular value is the l2
operator norm of A.

I The minimum singular value of A ∈ Rm×n is given by

σmin(A) =

{
σr(A) r = min{m,n}
0 r < min{m,n},

which is positive if and only if A is full rank.
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I The singular values of a symmetric matrix are the absolute values of its nonzero
eigenvalues, sorted into descending order. The singular values of a symmetric
positive semidefinite matrix are the same as its nonzero eigenvalues.

I The condition number of a nonsingular A ∈ Rn×n, denoted cond(A) or κ(A), is
defined as

cond(A) = ‖A‖2‖A−1‖2 = σmax(A)/σmin(A).
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Pseudo-inverse

I Let A = UΣV > be the singular value decomposition of A ∈ Rm×n, with
rankA = r. We define the pseudo-inverse or Moore-Penrose inverse of A as

A† = V Σ−1U> ∈ Rn×m.

I Alternative expresions are

A† = lim
ε→0

(A>A+ εI)−1A> = lim
ε→0

A>(AA> + εI)−1,

where the limits are taken with ε > 0, which ensures that the inverses in the
expressions exist. If rankA = m, then A† = A>(AA>)−1. If A is square and
nonsingular, then A† = A−1.
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I The pseudo-inverse comes up in problems involving least-squares, minimum norm,
quadratic minimization, and (Euclidean) projection. For example, A†b is a solution
of the least-squares problem

minimize ‖Ax− b‖22

in general. When the solution is not unique, A†b gives the solution with minimum
(Euclidean) norm. As another example, the matrix AA† = UU> gives (Euclidean)
projection on R(A). The matrix A†A = V V > gives (Euclidean) projection on
R(A>).
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I The optimal value p? of the (general, nonconvex) quadratic optimization problem

minimize (1/2)x>Px+ q>x+ r,

where P ∈ Sn, can be expressed as

p? =

{
−(1/2)q>P †q + r P � 0, q ∈ R(P )

−∞ otherwise.

(This generalizes the expression p? = −(1/2)q>P−1q + r, valid for P � 0.)
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