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01 Introduction

Effect of learning rate scheduling in transfer learning

« There are various factors that have to be considered during transfer learning.
= Ex) pretrained model, batch size, optimizer:-

* \We focused on ...
= Different learning rate scheduling
= Convergence behavior

= Two transfer learning scenarios



01 Introduction

Effect of learning rate scheduling in transfer learning
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02 Experimental Setup

1: Effect of hyperparameters in each Ir schedulers

a) Constant learning rate
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02 Experimental Setup

1: Effect of hyperparameters in each Ir schedulers

b) Step learning rate decay

After every step_size epochs, new_Ir = current_Ir * gamma

Step decay
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02 Experimental Setup

1: Effect of hyperparameters in each Ir schedulers

c) Exponential learning rate decay

After every epoch, new_Ir = current_Ir * gamma

Exponential decay
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02 Experimental Setup

1: Effect of hyperparameters in each Ir schedulers

d) Cosine annealing with warm restarts [Loshchilov et al., 2017]!

T 0. # of epochs of initial interval

T.: # of epochs of ith interval (= T, * T_mult)
T_0=20

Cosine annealing with warm restarts
T_mult =2

| G Gr— — >

20 40 80

1) I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In International Conference on Learning Representations, 2017.




02 Experimental Setup

1: Effect of hyperparameters in each Ir schedulers

e) Reduce on plateau

new_Ir = current_Ir * factor if training accuracy does not improve for patience epochs

Reduce on plateau
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02 Experiment

2. Effect between different learning rate schedulers

1.
2.
3.
4,
5.

Constant learning rate

Step learning rate decay

Exponential learning rate decay
Cosine annealing with warm restarts
Reduce on plateau

With initial learning rate = 0.001



02 Experimental Setup

3. Finetuning the ConvNet
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vs Using ConvNet as fixed feature extractor
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02 Experimental Setup

4. Using different initial learning rates between ConvNets and FC layers
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02 Experimental Setup

« Backbone network: ResNet18 pretrained on ImageNet
« Target dataset: Stanford CARS196

* Training Epochs: 200

* Batch size: 32

* Optimizer: SGD

 Momentum: 0.9

« Weight decay: 0.01

« Random seed: fixed



02 Experimental Setup

CARS 196 dataset

* 16,185 images of 196 classes of cars
e 8,144 training images and 8,041 testing images

» (lasses are typically at the level of Make, Model. Year, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe



1: Effect of hyperparameters in each Ir schedulers

a) Constant learning rate

Constant: Initial learning rate
= 0.0001 = 0.001 = 0.01

0.15

0.1

0.05

0 50 100

Constant: Initial learning rate

— 0.0001 = 0.001 = 0.01
0.01
(=7}
5
o
)
5
0.008 ©
0.006
0.004
0.002
Step
o 0
g 0 50 100 150




1: Effect of hyperparameters in each Ir schedulers

a) Constant learning rate




1: Effect of hyperparameters in each Ir schedulers

b) Step learning rate decay

Step: step_size /[ gamma

Step: step_size / gamma —10/01 =10/0.5 =40 /0.1

=90/ 8T =10 BS =48 7 9.1 0.001 —

%

S &

0.15 g

=

5

00008 &
- 0.0006
0.0004

0.05
0.0002
Step \ — \ Step
0 0
0 50 100 150 0 50 100 150




03 Results

1: Effect of hyperparameters in each Ir schedulers

b) Step learning rate decay




1: Effect of hyperparameters in each Ir schedulers

c) Exponential learning rate decay
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1: Effect of hyperparameters in each Ir schedulers

d) Cosine annealing with warm restarts
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1: Effect of hyperparameters in each Ir schedulers

d) Cosine annealing with warm restarts —
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1: Effect of hyperparameters in each Ir schedulers

e) Reduce on plateau
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1: Effect of hyperparameters in each Ir schedulers

e) Reduce on plateau

Reduce: Patience
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2. Effect between different learning rate schedulers

Different schedulers
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03 Result

. Finetuning the ConvNet vs Using ConvNet as fixed feature extractor
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03 Result

4. Using different initial learning rates between ConvNets and FC layers

Train Loss of Constant LR
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04 Conclusion

« Compared the effect of 5 different learning rate schedulers and hyperparameter settings in each of
th-erTf learning rate does not go to O, it oscillates near the convergent point.
= |f [earning rate decays too fast, it gets stuck at a local minimum with high loss.
= All the schedulers show similar convergence behavior.

* |nvestigated about the effect of freezing the part of the network(ConvNets) and discovered that
ConvNets also need to be updated to extract more appropriate features for target dataset.

e Experimented with different learning rates between ConvNets and FC layers and confirmed
that giving larger learning rate to FC layers converges faster,



Thanks




Appendix

Experiment detail

Hyperparameters used in schedulers in experiment 2, 3, 4

Step learning rate decay: step_size = 40, gamma = 0.1 in all experiments
Exponential learning rate decay: gamma = 0.99 in all experiments
Cosine annealing with warm restart

e T.0 =060 T_mult =2 in (Experiment 2, 4)

e T.0 =20 T_mult = 3 in (Experiment 3)
Reduce on plateau: patience = 40, factor = 0.1 in all experiments
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