CSED490Y OptML Final Presentation

Team 1 Yechan Hwang/Sungbin Shin CONTENTS

Introduction

Experimental Setup

Results

01 Introduction

Effect of learning rate scheduling in transfer learning

- There are various factors that have to be considered during transfer learning.
 - Ex) pretrained model, batch size, optimizer…
- We focused on ...
 - Different learning rate scheduling
 - Convergence behavior
 - Two transfer learning scenarios

01 Introduction

Effect of learning rate scheduling in transfer learning

Dataset 1 Dataset 1 Learning System Task 1 Knowledge Understand Learning System Task 2

Transfer learning

Pretrain & Fine-tune

1: Effect of hyperparameters in each Ir schedulers

a) Constant learning rate

1: Effect of hyperparameters in each Ir schedulers

b) Step learning rate decay

After every *step_size* epochs, new_lr = current_lr * *gamma*

1: Effect of hyperparameters in each Ir schedulers

c) Exponential learning rate decay

After every epoch, new_lr = current_lr * *gamma*

1: Effect of hyperparameters in each Ir schedulers

d) Cosine annealing with warm restarts [Loshchilov et al., 2017]¹

T_0: # of epochs of initial interval T_i : # of epochs of ith interval (= T_{i-1} * *T_mult)*

1) I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In International Conference on Learning Representations, 2017.

1: Effect of hyperparameters in each Ir schedulers

e) Reduce on plateau

new_lr = current_lr * *factor* if training accuracy does not improve for *patience* epochs

02 Experiment

2: Effect between different learning rate schedulers

- 1. Constant learning rate
- 2. Step learning rate decay
- 3. Exponential learning rate decay
- 4. Cosine annealing with warm restarts
- 5. Reduce on plateau

With initial learning rate = 0.001

3. Finetuning the ConvNet vs Using ConvNet as fixed feature extractor

4. Using different initial learning rates between ConvNets and FC layers

- Backbone network: ResNet18 pretrained on ImageNet
- Target dataset: Stanford CARS196
- Training Epochs: 200
- Batch size: 32
- Optimizer: SGD
- Momentum: 0.9
- Weight decay: 0.01
- Random seed: fixed

CARS196 dataset

- 16,185 images of 196 classes of cars
- 8,144 training images and 8,041 testing images
- Classes are typically at the level of *Make, Model, Year*, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe

a) Constant learning rate

Ster

150

a) Constant learning rate

b) Step learning rate decay

Step

150

b) Step learning rate decay

c) Exponential learning rate decay

d) Cosine annealing with warm restarts

d) Cosine annealing with warm restarts

e) Reduce on plateau

e) Reduce on plateau

2: Effect between different learning rate schedulers

03 Result

3. Finetuning the ConvNet vs Using ConvNet as fixed feature extractor

03 Result

4. Using different initial learning rates between ConvNets and FC layers

04 Conclusion

- Compared the effect of 5 different learning rate schedulers and hyperparameter settings in each of them.
 - If learning rate does not go to 0, it oscillates near the convergent point.
 - If learning rate decays too fast, it gets stuck at a local minimum with high loss.
 - All the schedulers show similar convergence behavior.
- Investigated about the effect of freezing the part of the network (ConvNets) and discovered that ConvNets also need to be updated to extract more appropriate features for target dataset.
- Experimented with different learning rates between ConvNets and FC layers and confirmed that giving larger learning rate to FC layers converges faster.

Thanks

Appendix

Experiment detail

Hyperparameters used in schedulers in experiment 2, 3, 4

- Step learning rate decay: step_size = 40, gamma = 0.1 in all experiments
- Exponential learning rate decay: gamma = 0.99 in all experiments
- Cosine annealing with warm restart
 - T_0 = 60, T_mult = 2 in (Experiment 2, 4)
 - T_0 = 20, T_mult = 3 in (Experiment 3)
- Reduce on plateau: patience = 40, factor = 0.1 in all experiments