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Optimization of machine learning algorithms

One could want to optimize an algorithm in order to be :
• Time efficient
• Cost efficient

Optimizing a machine learning algorithm consists of optimizing a black box problem. One
has multiple ways to optimize it :

• By simply increasing the computational power, we will then improve the execution
time at the expense of the costs

• Optimizing the algorithm hyperparameters
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Hyperparameters of a ML algorithm

A hyperparameter is a parameter that
is set before the beginning of the
learning processes and impacts the
effectiveness of a model training. 

This can be : 
• The learning rate
• Properties of the neural network

(number of layers and neurons)
• Batch size
• Number of epochs
• …
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Supervision method

We chose to use supervised learning in order to perform our hyperparameters optimization.

Supervised learning is defined by :
• A labeled dataset. All the inputs and outputs of the dataset is correctly labeled
• Thanks to this, the model can measure precisely :
▪ His accuracy over time
▪ His loss over time

Like this, it is easier to classify accurately how hyperparameters sets perform

A harder but more flexible method would have been unsupervised learning
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Optimization of a hyperparameter

This can be achieved by using multiple techniques such as :
• Grid search
• Random search
• Bayesian optimization
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Grid search

Set containing all the n hyperparameter combinations

Generate

This algorithm will generate all the neural networks possible based on all the
hyperparameters possible combinations and train all of them to keep the best results
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Random grid search

Set containing x out of n hyperparameter combinations

Generate

This algorithm will generate x out of n neural networks possible based on x out of n of the
hyperparameters possible combinations and train all of them to keep the best results
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Introduction to Bayesian Optimization 
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Bayesian Optimization Gaussian Process
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Bayesian Optimization method used in the project

•  
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Data Processing

https://www.researchgate.net/figure/Example-
images-from-the-MNIST-dataset_fig1_306056875

Data Set for Image Classification:

MNIST Handwritten Data

Data Processing:
• Splitting into training and testing

data
• Flattening Data
• Rescaling pixel values
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Neural Network Construction

Dense Neural Network Variable inputs of the neural
network construction for
hyperparameter testing:
• Learning rate
• Momentum
• Number of neurons per Layer

Constant hyperparameters:
• Number of layers
• Batch Size
• Epochs784

Neurons
10 Neurons

Softmax
Activation

Variable Number of
Neurons

Relu Activation
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Hyperparameter Search Space

3 tested hyperparameters within a given search space bound

Learning Rate:
[0.0001, 1]

Momentum:
[0,1]

Number of Neurons
per hidden Layer:

{16 ,32, 64}

Number of Layers:
3

Constant Hyperparameters

Epochs:
4

Batch Size:
32
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Type of Hyperparameter Optimization

Applied 3 types of hyperparameter optimization:
• Grid
• Random

• Different distributions
• Continuous
• Grid

• Bayesian
• Different distributions

• Continuous
• Grid

• Different Acquisition Functions
• Probability of Improvement
• Expected Improvement

Compare using
maximum achieved
accuracy over number of
iterations
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Experiments

We did multiple experiments in order to see the impact of hyperparameters on neural
networks results.

• We tried to optimize hyperparameters using 3 techniques :
▪ Grid search
▪ Random grid search
▪ Bayesian optimization
And compare how the new parameterized neural network performed with these
hyperparameters.

• Separately, we also tried to see the impact of the number of epochs on the final
performance
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Grid search
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Grid search

Result: 
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Random search
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Random search

Result:
Continuous Grid
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Bayesian optimization
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Bayesian optimization

Result:
Continuous Grid

Environment Experiments ConclusionOptimization techniquesIntroduction



23

Visualizing Bayesian Learning

Setup: 
• Search space: Continuous hyperparameter search space
• Acquisition function: Expected improvement acquisition function
• Number of neurons per layer: fixed to [32,64,16,10]
• Optimized: Learning rate and momentum

Result
• Heat map plot of Bayesian predicted accuracy of setting of learning rate

and momentum
• Visualize predictions after a different number of iteration of the Bayesian

algorithmc
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Visualizing Bayesian Learning
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Visualizing Bayesian Learning
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Corelated results
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Impact of epochs
Setup: 
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Conclusion
Observation:
• Neural network accuracy varied from ~0.1 to ~0.97 after 4 epochs based

on various hyperparameter settings

Potential Reasoning:
• Hyperparameter have significant effects on how the SGD optimization

algorithm functions and whether it converges to an optimal point

Conclusion:
• Finding good hyperparameter settings is important for efficient training

and good accuracy of a neural network
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Conclusion
Observation:
• Grid search took takes massive number of evaluations to complete while

random search and Bayesian optimization will find a good set of
hyperparameter in very few evaluation

Potential Reasoning:
• There are many points in the search space that are good sets of

hyperparameter that even by random sampling you are likely to discover
a good set of hyperparameter in very little time

• Bayesian optimization provide allows sampling that is more likely to be a
good set

Conclusion:
• It is best to use either random search or Bayesian optimization for

hyperparameter tuning
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Conclusion
Observation:
• Heat plots show that accuracy predictions vary greatly across different

learning rates while moment has less effect on accuracy predictions

Potential Reasoning:
• Learning rate can affect significantly how fast a model converges or

whether is converges at all
• Learning rate can determine whether a model gets stuck in a local

minimum
• Momentum has less effect on convergence behavior

Conclusion:
• It might be important to optimize learning rate than momentum
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Conclusion

Environment

Observation:
• Bayesian optimization results were not significantly better than random

search results

Potential Reasoning:
• The search space was small and many candidates in the search space

were equally good
• Convergence to optimal hyperparameters took very few iteration not

allowing Bayesian optimization to develop a good model

Conclusion:
• Bayesian optimization may be better applied to more complex

hyperparameter setting with larger search spaces

Experiments ConclusionOptimization techniquesIntroduction



32

Conclusion

Introduction Bayesian functioning Improved Bayesian ConclusionExperiments

• Finding a good set of hyperparameter is an important part of creating an
efficient functioning neural network

• Hyperparameter setting have significant effects on convergence behavior
of a neural network

• Some hyperparameters have more effect on convergence rate than
others

• Both random search and Bayesian optimization can both be useful
methods to tune hyperparameters which is a better fit may be dependent
on the search space complexity


