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‣ Hyperbolic space well-captures the hierarchical structure of data.

Hyperbolic Space

Hyperbolic space Word relationships MNIST
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‣ Learning the embeddings on the hyperbolic space is formulate as: 

. 

‣  : the given objective. 

‣ : the hyperbolic space. 

min
x∈ℍ

f(x)

f

ℍ

Learning Hyperbolic Embeddings
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‣ Learning hyperbolic embeddings is difficult than Euclidean embeddings. 

‣ Numerical stability issues often appear! 

Hyperbolic Embeddings Optimization - Problems

Loss curve of hyperbolic embedding learning
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(Contribution 1) We analyze the reason why the optimization on the 
hyperbolic space is difficult. 

(Contribution 2) We propose the hyperbolic version of projected gradient 
descent and show that it is more efficient. 

Contributions
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Background
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‣ Riemannian manifold  is a pair of a manifold and a metric tensor. 

‣ Manifold : set of points. 

‣ Metric tensor : used to define geometric operations, i.e. angle of two vectors and distance. 

‣ Hyperbolic space is a unique, complete, simply connected Riemannian 
manifold with constant negative sectional curvature.

(ℳ, g)
ℳ

g

Riemannian Manifold
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‣ A tangent space  is the set of the vectors tangent to .  

‣ Metric tensor: inner product of two tangent vectors. 

𝒯xℳ x ∈ ℳ

Tangent Space

Tangent space
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‣ Exponential map  moves  to a point along the tangent vector . 

‣ (=) project a tangent vector to a point of the manifold.  

expx(v) x v

Exponential Map

Exponential map and log map of the Riemannian manifold
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‣ We can update the parameters on the Riemannian manifold as: 

. 

‣ : the Riemannian gradient. 

xt+1 = expxt (−ηtH(xt))
H(xt)

Riemannian Stochastic Gradient Descent (RSGD)

Riemannian Stochastic Gradient Descent
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Analysis
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‣ Previous work argue that learning hyperbolic embeddings is difficult. 

‣ i.e. numerically unstable. 

‣ Why? 

RSGD: Issues
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‣ Exponential map of hyperbolic space is consisted of hyperbolic functions. 

‣ Hyperbolic functions are similar to exponential function which rapidly increases. 

‣ The identity function  fails to preserve the input with large magnitude. logx(expx(v))

Exponential Map of Hyperbolic Space

Norm of input [-1, 1] [-10, 10] [-100, 100] [-1000, 1000]

Error rate 1.25E-32 4.97E+00 6.15E+03 9.98E+05

Log(Exp(x))Hyperbolic functions
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‣ We empirically show that the Riemannian gradient in the hyperbolic 
space depends on the norm. 

‣ The norm of the gradient increases at first and then decreases. 

‣ Need smaller learning rate to converge. 

Behavior of Riemannian Gradient
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Trajectory of the learning process



‣ We propose a hyperbolic projected gradient descent method. 

‣ Due to the complexity of the projection function, we use the approximated version. 

Hyperbolic Projected Gradient Descent (HPGD)
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Given point

Projected point
Orthogonal to the asymptote



Experiments
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‣ We compare the methods in i) synthetic and ii) real-world settings. 

Experiments
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‣ We first sample a ground-truth point  and define the objective as: 

, 

‣ where  is the learned parameter. 

x ∈ ℍ

L(x, ̂x) =
1
2

∥x − ̂x∥2
2

̂x

Synthetic Setting
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‣ We compare the steps needed to converge to the ground-truth. 

‣ We empirically find the learning rate for RGD where it converges. 

‣ For HPGD, we fix the learning rate to 1.0. 

Synthetic Setting: Metric
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‣ HPGD is i) stable than RGD w.r.t the choice of learning rate and ii) 
show faster convergence. 

Synthetic Setting: Results
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‣ We provide analysis for the RSGD on the hyperbolic space. 

‣ We show that HPGD converges faster than RSGD due to the stability on 
the learning rate. 

Conclusions
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Thank You :)
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