
Team 4
Taegyu Park, Byeongju Woo

Convergence Rate of Transformer with Pruning

1

May 30, 2022

VISUALIZATION

I. Introduction

II. Experiment

III. Result

IV. Conclusion

Table of Contents

2

I. Attention Mechanism

II. Transformer

III. Optimizers

IV. ReduceLROnPlateau

V. Lottery Hypothesis

VI. Loss Landscape

Introduction

3

3 Experiments about Convergency of Transformer

IntroductionPreliminary

4

Attention mechanism

Attention mechanism examines bipartite pairwise similarities of a query sequence and a key sequence.
And then it uses the result to appropriately mix the value sequence that is correlated to the key
sequence.

https://programmer.ink/think/attention-mechanism-and-seq2seq-model.html

IntroductionPreliminary

5

Transformer model

Transformer is an autoencoder model that uses multiple
attention blocks.

Since attention blocks have quadratic time complexity, typically
Transformer models are heavy and memory-consuming.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. Advances in neural information processing systems, 30.

IntroductionBrief Recap

6

Optimization

In the lectures, we’ve learned several optimization algorithms such as SGD and Adam.
Also, we’ve seen that for some configuration, decreasing learning rate is crucial for convergence.

SGD: 𝑤𝑤𝑡𝑡 = 𝑤𝑤𝑡𝑡−1 − 𝜂𝜂∇𝑤𝑤𝐿𝐿 𝑥𝑥;𝑤𝑤𝑡𝑡−1

(From slide 8)

Adam: 𝑔𝑔𝑡𝑡 = ∇𝑤𝑤𝐿𝐿 𝑥𝑥;𝑤𝑤𝑡𝑡−1 , 𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + 1 − 𝛽𝛽1 𝑔𝑔𝑡𝑡, 𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + 1 − 𝛽𝛽2 𝑔𝑔𝑡𝑡2, �𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡
1−𝛽𝛽1𝑡𝑡

, �𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2𝑡𝑡

𝑤𝑤𝑡𝑡 = 𝑤𝑤𝑡𝑡−1 − 𝛾𝛾
�𝑚𝑚𝑡𝑡

�𝑣𝑣𝑡𝑡 + 𝜖𝜖

Proper optimization method for attention mechanism ?

IntroductionReduceLROnPlateau

7

ReduceLROnPlateau learning rate scheduler

ReduceLROnPlateau(RedLR) is a learning rate scheduler
decreases the learning rate, only when a designated metric does not improve.

Why decrease learning rate? Because an optimizer can ‘overshoot’ the minimal point for some convex
functions (and non-convex functions).

https://cs231n.github.io/neural-networks-3/

IntroductionLottery Hypothesis

8

Lottery Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when
trained in isolation—it can match the test accuracy of the original network after training for at most the
same number of iterations.

Assume initial parameters are the same.
𝑓𝑓(𝑥𝑥;𝜃𝜃𝑡𝑡) has accuracy 𝑎𝑎 with minimum validation loss.
𝑓𝑓 𝑥𝑥;𝑚𝑚⊙ 𝜃𝜃𝑡𝑡′ has accuracy 𝑎𝑎′ with minimum validation loss.
𝑚𝑚 is a ‘mask’.

∃𝑚𝑚 𝑠𝑠. 𝑡𝑡.∑𝑚𝑚 ≪ 𝜃𝜃 , 𝑎𝑎′ ≥ 𝑎𝑎, 𝑡𝑡′ ≤ 𝑡𝑡

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635.

IntroductionLoss Landscape

9

Drawing loss landscape (1)

For two random tensors 𝑥𝑥 and 𝑦𝑦, a loss landscape can be drawn by sampling points 𝛼𝛼,𝛽𝛽 that have the
value 𝐿𝐿 𝑤𝑤 + 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦 , as introduced in the paper (Li et al., 2018).

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2018). Visualizing the loss landscape of neural nets.
Advances in neural information processing systems, 31.

IntroductionLoss Landscape

10

visualize_loss_landscape(model, grid_num, 𝑥𝑥, 𝑦𝑦):
𝛿𝛿 ← 2 / (grid_num − 1)
FOR 𝛼𝛼, 𝛽𝛽 EACH VALUE GROWS FROM -1 UP TO 1 BY 𝛿𝛿:
𝑤𝑤 ← model’s parameter
𝑤𝑤′ ← 𝑤𝑤 + 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦
ℒ ← inference_loss(model(𝑤𝑤′))
record(𝛼𝛼, 𝛽𝛽, ℒ)

I. Optimization for Attention

II. Visualizing Epoch-wise
Landscape of Transformer

III. Visualize Loss Landscape of
Pruned Transformer

Experiment

11

ExperimentExp 1 : Optimization for Attention

12

Experiment settings

First, generate a classification task dataset with a simple generator model. Then we train a single
attention mechanism block using various optimization strategies.

Total number of 30,000 data generated in this experiment, and those are split 7:3 to create a training
set and a validation set. Cross entropy loss is used.

We use 6 settings:
• SGD
• SGD with RedLR
• NAG
• NAG with RedLR
• Adam
• Adam with RedLR

https://wandb.ai/

Purpose : To find proper optimization method for attention mechanism

ExperimentExp 2 : Visualizing Epoch-wise Landscape of Transformer

13

Experiment Steps

Purpose : investigate importance of initial parameter for pruned model training

Step1. Train transformer baseline for WMT’16 Translation task, recording init params, 𝑤𝑤0(Adam)
(Reproduce Pytorch implementation of ‘Attention is all you need’)

Step2. Prune 10% of the network from Step1, and train it from various initial parameter near 𝑤𝑤0.

- Training starts from the initial parameter 𝑤𝑤0 + 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦.
- Set 𝑥𝑥 direction as �𝑤𝑤∗ −𝑤𝑤0 to observe its effect on landscapes.
- Set 𝑦𝑦 direction as random tensor

Step3. Plot the 2D surface of a specific criteria : loss, perplexity, or accuracy.
Also, by recording those 2D surfaces epoch-wise, create videos of changing 2D surfaces.

Experiment Steps

ExperimentExp 3 : Visualize Loss Landscape of Pruned Transformer

14

Step1. Train transformer baseline for WMT’16 Translation task, recording init params , 𝑤𝑤0
(Reproduce Pytorch implementation of ‘Attention is all you need’)

Step2. Prune the network from Step1, and training from 𝑤𝑤0 or random init

Recorded init, 30% pruning Random init, 30% pruning

Recorded init, 80% pruning Random init, 80% pruning

Step3. Compare 5 models in terms of convergency late, accuracy and loss landscapes

Same Implementation details with Step1

Purpose : To gain insight of convergency of pruned transformer by visualizing loss landscape

Experiment

15

Implementation Details

Device Tesla P100-PCIE-16GB (Google Colab+) , 1 GPU

Base Model Pytorch implementation of ‘Attention is all you need’

Batch size 192

Epoch 100

Lr_mul 0.5

Optimizer Adam

Visualization Tool Details

- Github code will be released as soon
as possible

- You can reproduce Experiment
with these settings !

- By using method of ‘Visualizing the Loss Landscape of Neural Nets’ ,

- Save data as .CSV file, and visualize on website UI tool, named ‘LossPlot’

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Result

16

I. Optimization for Attention

II. Visualizing Epoch-wise
Landscape of Transformer

III. Visualize Loss Landscape of
Pruned Transformer

ResultExp 1 : Optimization for Attention

17

Result graph

SGD
NAG

Adam

Convergence rate: Adam > NAG > SGD

ResultExp 1 : Optimization for Attention

18

Result graph

SGD+RedLR
NAG+RedLR

Adam+RedLR

Convergence rate: Adam+RedLR > NAG+RedLR > SGD+RedLR
(dotted lines represent learning rate decrease)

Much smoother as learning goes on

ResultExp 2 : Visualizing Epoch-wise Landscape of Transformer

19

Result graph: train set

Up: original result. Down: smooth approximate

perplexity loss accuracy

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

ResultExp 2 : Visualizing Epoch-wise Landscape of Transformer

20

Result graph: validation set

Up: original result. Down: smooth approximate

perplexity loss accuracy

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

𝛽𝛽
𝛼𝛼

Validation loss & accuracy as training proceeds

Result

21

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Result

22

Baseline Visualization with different scales

※ Scale means the range of search space of landscape

Baseline, Local View (scale=0.2) Baseline, Global View (scale=1.0)

𝐿𝐿 𝑤𝑤 + 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 ∗ 𝛼𝛼𝑥𝑥 + 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 ∗ 𝛽𝛽𝑦𝑦

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Result

23

Compare WLTs with baseline, Global View

Baseline 30% pruned WLT 80% pruned WLT

4

6

8

10

12

4

8

10

6

4

6

8

10

12

2

Landscape smoothened. 80% pruned one has deeper & wider minima.

Exp 3 : Visualize Loss Landscape of Pruned Transformer

The more the model is pruned, the wider local minimum becomes.

Result

24

Compare WLTs with baseline, Local View

Baseline 30% pruned WLT 80% pruned WLT

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Result

25

Compare WLTs with init param, Global View

30% pruned WLT 30% pruned random init

4

8

10

6

6.8

6.4

6.0

5.6

For random ticket, loss range become much lesser, and become very flat

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Result

26

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Conclusion

27

I. Optimization for Attention

II. Visualizing Epoch-wise
Landscape of Transformer

III. Visualize Loss Landscape of
Pruned Transformer

IV. Discussion

Experiment summary

Convergence rate: Adam = Adam+RedLR > NAG+RedLR > NAG ≫ SGD+RedLR > SGD
SGD showed a linear loss decrease, while Adam and NAG showed a much faster loss decrease.
RedLR scheduler helped smooth graphs and slightly improved SGD’s validation accuracy.

ConclusionExp 1 : Optimization for Attention

28

Conclusion

We’ve confirmed that attention mechanism well follows
the theoretical convergence curve seen in lectures, such

as 𝜖𝜖~𝒪𝒪 1
𝑇𝑇

and 𝜖𝜖~𝒪𝒪 1
𝑇𝑇2

. Also, RedLR can lead to much

stable convergence for attention mechanism-based
models.

ConclusionExp 2 : Visualizing Epoch-wise Landscape of Transformer

29

Experiment summary

Points with higher 𝛼𝛼, the direction that points the optimal point, showed much better accuracy and
lower loss compared to other points, even though their initial loss were larger than others. Likewise,
points with lower 𝛼𝛼 showed relatively low accuracy and high loss. However, some points like (-1, 0), (-0.5,
1) or (0, 1) showed higher performance.

Conclusion

We’ve seen that appropriate initialization point is crucial
to final performance. Although initial points closer to
optimal point scored better accuracy, whether an initial
point is closer to the optimal point is not necessary for
scoring high accuracy. And unfortunately, this
initialization point with 10% pruning wasn’t a winning
ticket.
Also, there is no significant difference in the rate of
change of metrics for each point.

loss accuracy

𝛽𝛽𝛼𝛼 𝛽𝛽𝛼𝛼

Conclusion

30

We found that finding WLTs of transformer is quite easy, with large performance gap (51%70%)
 Implies Transformer is over-parameterized, many connections are unnecessary

Exp 3 : Visualize Loss Landscape of Pruned Transformer

Empirical results show that WLT method help smooth Loss Landscape a little bit, with
deeper minimum point

Below argument of Li et al[1] confirmed empirically

“ Training a pruned model from scratch performs worse than
retraining a pruned model, which may indicate the difficulty
of training a network with a small capacity.”

 Very flat loss surface of “30% pruned w/ random” prevent training,
by providing near 0 curvature

 If the point move far away from the optima, loss value does not
increase significantly (Even less than WLT)

 Implies the expressiveness of the model is insensitive to
parameter change : can be explained by small capacity

ConclusionDiscussion

31

If we had much time and computational resource, we could have additional experiments like finding
optimal prune rate, broader initial parameter landscape, loss landscape of a single attention head w/o
residual connection, etc.

For attention block, optimizers seen in lectures work as intended even if applied to a complex function
with a randomly generated dataset.

Choosing nice initial parameter is important for final performance. However, even if started on another
initial point near the original one, the model may get near optimal performance like WLTs. This means
there are some group of initial parameters that acts like a winning ticket.

80% pruned winning ticket of Transformer performed better than the original one and had better loss
landscape, while randomly initialized one didn’t. It is because randomly initialized model has flat loss
landscape compared to winning tickets.

ConclusionAdditionally…

32

Official code for “visualizing loss landscape of neural nets” is very difficult to use!

1. It requires additional viewer program

2. Its dataset loader, model loader is hard corded.

3. Code are distributed messy. You should revise
a lot part of code for your own dataset and
model

 But for our visualization code is simply applicable for any pytorch model which provide

model.state_dict() and model.load()

We hope you use our code if you want to visualize your own model

Taegyu Park, Byeongju Woo

Thank you for listening

33

Our code is available at https://github.com/DelVel/CSED490Y

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33

