Online Convex Programming and Generalized Infinitesimal Gradient Ascent (ICML 2003)

Martin Zinkevich¹

¹Carnegie Mellon University

Presented by Dongyun Kim (Group 11)

2 Term Project Plan

Sections of this paper

- Introduction
- Online Convex Programming
 - Analyzing the Performance of the Algorithm
 - Regret Against a Dynamic Strategy
- Generalized Infinitesimal Gradient Ascent
 - Repeated Games
 - Ø Formulating a Repeated Game as an Online Linear Program
- Converting Old Algorithms
 - Formal Definitions
 - Onverting an OLPA to an Online Convex Programming Algorithm
- 8 Related Work
- Future Work
- Onclusions

Sections of this paper

Introduction

Online Convex Programming

- Analyzing the Performance of the Algorithm
- Regret Against a Dynamic Strategy

Generalized Infinitesimal Gradient Ascent

- Repeated Games
- Ø Formulating a Repeated Game as an Online Linear Program

Converting Old Algorithms

- Formal Definitions
- Onverting an OLPA to an Online Convex Programming Algorithm

6 Related Work

• Future Work

Onclusions

- Convex programming consists of a convex feasible set F ⊂ ℝⁿ and a convex cost function c : F → ℝ.
- Most of the methods and topics we discussed in-class were optimization for machine learning under an *offline environment*, where we have full access of the cost function, training data,..., beforehand.
- We discuss *online convex programming*, in which an algorithm faces a sequence of convex programming problems, each with the same feasible set but different cost functions.
- Each time the algorithm must choose a point before it observes the cost function.

Definition

An **convex programming problem** consists of a convex feasible set $F \subset \mathbb{R}^n$ and a convex cost function $c : F \to \mathbb{R}$.

Definition

An **convex programming problem** consists of a convex feasible set $F \subset \mathbb{R}^n$ and a convex cost function $c : F \to \mathbb{R}$.

Definition

An **online convex programming problem** consists of a convex feasible set $F \subset \mathbb{R}^n$ and an infinite sequence $\{c^1, c^2, ...\}$ where each $c^t : F \to \mathbb{R}$ is a convex function.

Definition

An **convex programming problem** consists of a convex feasible set $F \subset \mathbb{R}^n$ and a convex cost function $c : F \to \mathbb{R}$.

Definition

An **online convex programming problem** consists of a convex feasible set $F \subset \mathbb{R}^n$ and an infinite sequence $\{c^1, c^2, ...\}$ where each $c^t : F \to \mathbb{R}$ is a convex function.

Definition

At each time step t, an **online convex programming algorithm** selects a vector $x^t \in F$. After the vector is selected, it receives the cost function c^t .

- In online convex programming, all information (e.g. cost functions c^t for all time step t) is not available before decisions are made.
- Therefore, online algorithms do not reach "solutions" (e.g. minima), but instead achieve certain goals.
- A measure of performance called *regret* is considered.
- Average regret is the regret divided by T, the number of rounds.

The remainder of this paper is presented under the following assumptions.

- The feasible set F is **bounded**. That is, there exists $N \in \mathbb{R}$ such that $\forall x, y \in F$, $||x - y||_2 \leq N$.
- **2** The feasible *F* is **closed**. That is, for all sequences $\{x^1, x^2, ...\}$ where $x^t \in F$ for all *t*, if there exists a $x \in \mathbb{R}^n$ such that $x = \lim_{t \to \infty} x^t$, then $x \in F$.
- Solution The feasible set F is nonempty.
- For all t, c^t is differentiable¹.

¹We can relax this assumption in terms of the existence of subgradient as follows: Given x, there exists a vector g_x such that $c^t(y) \ge c^t(x) + g_x(y-x)$ for all y. The remainder of this paper is presented under the following assumptions.

- So There exists an N ∈ ℝ such that for all t, for all x ∈ F, $\|\nabla c^t(x)\|_2 \le N.$
- **(**) For all *t*, there exists an algorithm, given *x*, which produces $\nabla c^t(x)$.
- **⊘** For all $y \in \mathbb{R}^n$, there exists an algorithm which can produce the projection of y onto F defined as $\operatorname{proj}_F(y) = \arg \min_{x \in F} ||x y||_2$.¹

¹This paper uses the notation P(y), but we shall use this one since we did in-class.

Algorithm 1 (Greedy Projection)

Select an arbitrary $x^1 \in F$ and a sequence of learning rates $\eta_1, \eta_2, \ldots \in \mathbb{R}^+$. In time step t, after receiving a cost function c^t , select the next vector x^{t+1} according to:

$$x^{t+1} = \operatorname{proj}_{F}(x^{t} - \eta_{t} \nabla c^{t}(x^{t})).$$

Algorithm 1 (Greedy Projection)

Select an arbitrary $x^1 \in F$ and a sequence of learning rates $\eta_1, \eta_2, \ldots \in \mathbb{R}^+$. In time step t, after receiving a cost function c^t , select the next vector x^{t+1} according to:

$$x^{t+1} = \operatorname{proj}_F(x^t - \eta_t \nabla c^t(x^t)).$$

• Note that if we happened to know that cost functions c^t were actually all identical, i.e., $c^t = c$ for all time steps t, then *Greedy Projection* is exactly the same as PGD which we have learned in-class [s06-2].

Definition

Given an algorithm A, and a convex programming problem $(F, \{c^1, c^2, ...\})$, if $\{x^1, x^2, ...,\}$ are the vectors selected by A, then the **cost** of A until time T is

$$C_A(T) = \sum_{t=1}^T c^t(x^t).$$

The cost of a static feasible solution $x \in F$ until time T is

$$C_x(T) = \sum_{t=1}^T c^t(x).$$

The **regret** of algorithm A until time T is

$$R_A(T) = C_A(T) - \min_{x \in F} C_x(T).$$

Theorem (Greedy Projection's regret)

If $\eta_t = 1/\sqrt{t}$, the regret of the Greedy Projection algorithm is

$$R_{G}(T) \leq \frac{\|F\|^{2}\sqrt{T}}{2} + (\sqrt{T} - \frac{1}{2})\|\nabla c\|_{2}^{2}$$

where $\|F\| := \max_{x,y \in F} \|x - y\|_{2}$ and $\|\nabla c\| := \max_{x \in F, t \in \{1,2,...\}} \|\nabla c^{t}(x)\|_{2}.$

Proof

- We begin with arbitrary $\{c^1, c^2, ...\}$. Running *Greedy Projection*, we obtain $\{x^1, x^2, ...\}$.
- Because c^t is convex, for all x:

$$c^t(x) \geq c^t(x^t) + (\nabla c^t(x^t)) \cdot (x - x^t).$$

Set x* to be a statically optimal vector, i.e., x* := arg min C_x(T).
 Since x* ∈ F, from the previous inequality we have

$$c^t(x^*) \geq c^t(x^t) + (\nabla c^t(x^t)) \cdot (x^* - x^t).$$

• subtract both sides from $c^t(x^t)$, we get

$$c^{t}(x^{t}) - c^{t}(x^{*}) \leq c^{t}(x^{t}) - (c^{t}(x^{t}) + (\nabla c^{t}(x^{t})) \cdot (x^{*} - x^{t})).$$

Proof (Continued)

- Define linear function g^t(x) := ∇c^t(x^t) · x. If we were to change function c^t to function g^t, the behavior of the algorithm will still be the same (∵ ∇g^t(x^t) = ∇c^t(x^t)). That is, we will select the same {x¹, x², ...}.
- Thus, we can rewrite the previous inequality

$$c^{t}(x^{t})-c^{t}(x^{*})\leq \underline{c^{t}(x^{t})}-\left(\underline{c^{t}(x^{t})}+(\nabla c^{t}(x^{t}))\cdot(x^{*}-x^{t})\right).$$

as

$$c^{t}(x^{t}) - c^{t}(x^{*}) \leq g^{t}(x^{t}) - g^{t}(x^{*}) := (x^{t} - x^{*}) \cdot \nabla c^{t}(x^{t}).$$

• We will now bound the RHS of this inequality.

Proof (Continued)

- Define for all t, $y^{t+1} := x^t \eta_t \nabla c^t(x^t)$.
- Then, we can rewrite Greedy Projection as

$$x^{t+1} = \operatorname{proj}_{F}(x^{t} - \eta_{t} \nabla c^{t}(x^{t})) = \operatorname{proj}_{F}(y^{t+1}).$$

• By definition of y^{t+1} , we have

$$(y^{t+1} - x^*)^2 = ((x^t - x^*) - \eta_t \nabla c^t(x^t))^2$$

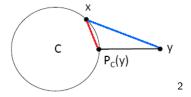
= $(x^t - x^*)^2 - 2\eta_t (x^t - x^*) \cdot \nabla c^t(x^t) + \eta_t^2 \|\nabla c^t(x^t)\|_2^2$
 $\leq (x^t - x^*)^2 - 2\eta_t (x^t - x^*) \cdot \nabla c^t(x^t) + \eta_t^2 \|\nabla c\|_2^2.$

Proof (Continued)

 Recall the following property of projection operator on convex sets, which we have discussed in-class.¹

Property (Projection on a convex set F is contracting)

For all $y \in \mathbb{R}^n$, for all $x \in F$, $(\text{proj}_F(y) - x)^2 \leq (y - x)^2$.



¹ A proof is given in Schneider, R. (2013). Convex Bodies: The Brunn-Minkowski Theory, page 9 ² https://wikidocs.net/22434

Proof (Continued)

• Using the previous inequality and this property, we have,

$$(x^{t+1} - x^*)^2 = (\operatorname{proj}_F(y^{t+1}) - x^*)^2 \le (y^{t+1} - x^*)^2$$
$$\le (x^t - x^*)^2 - 2\eta_t (x^t - x^*) \cdot \nabla c^t (x^t) + \eta_t^2 \|\nabla c\|_2^2.$$

• Rearranging terms and dividing both sides by $2\eta_t$, we get

$$(x^t - x^*) \cdot
abla c^t(x^t) \leq rac{1}{2\eta_t} \left((x^t - x^*)^2 - (x^{t+1} - x^*)^2
ight) + rac{\eta_t}{2} \|
abla c\|_2^2.$$

• We conclude the following inequality, in which taking the summation from t = 1, ..., T of the LHS will give regret $R_G(T)$.

$$c^{t}(x^{t}) - c^{t}(x^{*}) \leq rac{1}{2\eta_{t}}\left((x^{t} - x^{*})^{2} - (x^{t+1} - x^{*})^{2}\right) + rac{\eta_{t}}{2} \|
abla c\|_{2}^{2}.$$

Proof (Continued)

• By summing we get

$$R_{G}(T) \leq \sum_{t=1}^{T} \frac{1}{2\eta_{t}} \left((x^{t} - x^{*})^{2} - (x^{t+1} - x^{*})^{2} \right) + \frac{\eta_{t}}{2} \|\nabla c\|^{2} \leq \frac{1}{2\eta_{1}} (x^{1} - x^{*})^{2} - \frac{1}{2\eta_{T}} (x^{T+1} - x^{*})^{2} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) (x^{t} - x^{*})^{2} + \frac{\|\nabla c\|^{2}}{2} \sum_{t=1}^{T} \eta_{t} \leq \|F\|^{2} \left(\frac{1}{2\eta_{1}} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) \right) + \frac{\|\nabla c\|^{2}}{2} \sum_{t=1}^{T} \eta_{t} \leq \|F\|^{2} \frac{1}{2\eta_{T}} + \frac{\|\nabla c\|^{2}}{2} \sum_{t=1}^{T} \eta_{t}$$

• Now, if we define $\eta_t = 1/\sqrt{t}$

$$\sum_{t=1}^{T} \eta_t = \sum_{t=1}^{T} \frac{1}{\sqrt{t}}$$

$$\leq 1 + \int_{t=1}^{T} \frac{dt}{\sqrt{t}}$$

$$\leq 1 + \left[2\sqrt{t}\right]_1^T$$

$$\leq 2\sqrt{T} - 1$$

• Plugging this to the previous inequality finishes the proof.

Theorem

If $\eta_t = 1/\sqrt{t}$, the regret of the Greedy Projection algorithm is

$$R_{\mathcal{G}}(\mathcal{T}) \leq rac{\|\mathcal{F}\|^2 \sqrt{\mathcal{T}}}{2} + (\sqrt{\mathcal{T}} - rac{1}{2}) \|
abla c\|_2^2$$

where
$$||F|| := \max_{x,y\in F} ||x-y||_2$$
 and $||\nabla c|| := \max_{x\in F, t\in\{1,2,\ldots\}} ||\nabla c^t(x)||_2$.

• Therefore, the average regret of Greedy Projection approaches to 0

$$\limsup_{T\to\infty}\frac{R_G(T)}{T}=0.$$

- The first term of the bound is because we might begin on the wrong side of *F*.
- The second part is a result of the fact that we always respond (x^{t+1}) after we see the cost function (c^t).

• This section is only in the full version of the paper.¹

Algorithm 2 (Lazy Projection)

Select an arbitrary $x^1 \in F$ and a sequence of learning rates $\eta_1, \eta_2, \ldots \in \mathbb{R}^+$. Define $y^1 = x^1$. In time step *t*, after receiving a cost function c^t , define y^{t+1} :

$$y^{t+1} = y^t - \eta_t \nabla c^t(x^t)$$

and select the vector

$$x^{t+1} = \operatorname{proj}_F(y^{t+1}).$$

¹Online convex programming and generalized infinitesimal gradient ascent (Technical Report CMU-CS-03-110). CMU

Theorem (Lazy Projection's regret)

Given a constant learning rate $\eta,$ Lazy Projection's regret is

$$R_L(T) \leq \frac{\|F\|^2}{2\eta} + \frac{\eta \|\nabla c\|^2 T}{2}.$$

The proof given is in the appendix of the full version of this paper.¹

¹Online convex programming and generalized infinitesimal gradient ascent (Technical Report CMU-CS-03-110). CMU

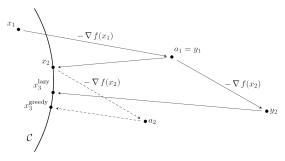


FIGURE 1. Graphical illustration of the greedy (dashed) and lazy (solid) branches of the projected subgradient (PSG) method.

- *Greedy variant*: adds $-\nabla f(x_n)$ to x_n and projects back to C if needed.
- Lazy variant: the gradient term -∇f(x_n) is not added to x_n, but to the "unprojected" iterate y_n. We only project to C in order to obtain the algorithm's next iterate.

Dongyun Kim (POSTECH)

1

¹ Kwon, J., & Mertikopoulos, P. (2014). A continuous-time approach to online optimization. *Journal of Dynamics and Games*, 4(2):125–148, 2017

- This paper presents an online form of the standard gradient descent from offline optimization: Online Gradient Descent (OGD)
- This algorithm can guarantee $\mathcal{O}(\sqrt{T})$ regret for an arbitrary sequence of differentiable convex functions.
- Note: A sequence defined by algorithm A has "no-regret" if the regret is sublinear as a function of T, i.e., $R_A(T) = O(T)$.
- How to improve the regret bound for strongly-convex losses?
 E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69:169-192, 2007

1 Paper Review

- Week 7-8: Study Online Convex Optimization (OCO) framework
- Week 9-10: Review recent papers related to OCO algorithms and its applications
- Week 11-12: Implement basic OCO algorithms via Pytorch/Tensorflow
- Week 13-14: Experiment regret convergence via datasets and apply OCO algorithms as optimizers for specific machine learning problems (e.g. SVM classification of MNIST dataset)
- Week 15: Project presentation

- Week 7-8: Study Online Convex Optimization (OCO) framework
- Week 9-10: Review recent papers related to OCO algorithms and its applications e.g. Follow-The-Leader
- Week 11-12: Implement basic OCO algorithms via Pytorch/Tensorflow
- Week 13-14: Experiment regret convergence via datasets and apply OCO algorithms as optimizers for specific machine learning problems (e.g. SVM classification of MNIST dataset)
- Week 15: Project presentation

Martin Zinkevich.

Online convex programming and generalized infinitesimal gradient ascent.

In Proceedings of the 20th international conference on machine learning (ICML-2003), pages 928–936, 2003.

Daniel Golovin.

Lecture notes in cs 253: Advanced topics in machine learning. http://courses.cms.caltech.edu/cs253/slides/ cs253-lec3-convex.pdf.

Joon Kwon and Panayotis Mertikopoulos.
 A continuous-time approach to online optimization.
 Journal of Dynamics and Games, 4(2):125–148, 2017.