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Introduction

@ Convex programming consists of a convex feasible set F C R”
and a convex cost function ¢ : F — R.

@ Most of the methods and topics we discussed in-class were
optimization for machine learning under an offline environment, where
we have full access of the cost function, training data,..., beforehand.

@ We discuss online convex programming, in which an algorithm
faces a sequence of convex programming problems, each with
the same feasible set but different cost functions.

@ Each time the algorithm must choose a point before it observes
the cost function.
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Online Convex Programming

Definition

An convex programming problem consists of a convex feasible set
F C R” and a convex cost function c: F — R.
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Online Convex Programming

An convex programming problem consists of a convex feasible set
F C R” and a convex cost function c: F — R.

Definition
An online convex programming problem consists of a convex feasible

set F C R” and an infinite sequence {c!,c?,...} where each ¢f: F = R is
a convex function. )
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Online Convex Programming

An convex programming problem consists of a convex feasible set
F C R” and a convex cost function c: F — R.

v
Definition
An online convex programming problem consists of a convex feasible

set F C R” and an infinite sequence {c!,c?,...} where each ¢f: F = R is
a convex function.

\

Definition
At each time step t, an online convex programming algorithm selects a
vector xt € F. After the vector is selected, it receives the cost function ct.)
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Online Convex Programming

@ In online convex programming, all information (e.g. cost functions
ct for all time step t) is not available before decisions are made.

@ Therefore, online algorithms do not reach “solutions” (e.g. minima),
but instead achieve certain goals.

@ A measure of performance called regret is considered.

@ Average regret is the regret divided by T, the number of rounds.
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Online Convex Programming

The remainder of this paper is presented under the following assumptions.

@ The feasible set F is bounded.
That is, there exists N € R such that Vx,y € F, ||[x — y|2 < N.

@ The feasible F is closed. That is, for all sequences {x*, x2,...}
where xt € F for all t, if there exists a x € R" such that x = lim x¢f,

t—o00
then x € F.
© The feasible set F is nonempty.
Q For all t, ct is differentiable?.

1We can relax this assumption in terms of the existence of subgradient as follows:

Given x, there exists a vector gy such that c’(y) > c'(x) + g«(y — x) for all y.
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Online Convex Programming

The remainder of this paper is presented under the following assumptions.

@ There exists an N € R such that for all ¢, for all x € F,
IVet(x)]z < N.

@ For all t, there exists an algorithm, given x, which produces Vc!(x).

@ For all y € R”, there exists an algorithm which can produce the
projection of y onto F defined as projg(y) = arg min,cfr [|x — y/|2.1

'This paper uses the notation P(y), but we shall use this one since we did in-class.
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Online Convex Programming

Algorithm 1 (Greedy Projection)

Select an arbitrary x! € F and a sequence of learning rates
n1,1M2,... € RT. In time step t, after receiving a cost function c?, select the
next vector xt*1 according to:

X = proje(x* — ne Vet (x")).
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Online Convex Programming

Algorithm 1 (Greedy Projection)

Select an arbitrary x! € F and a sequence of learning rates
n1,1M2,... € RT. In time step t, after receiving a cost function c?, select the
next vector xt*1 according to:

X = proje(x* — ne Vet (x")).

o Note that if we happened to know that cost functions ¢! were actually
all identical, i.e., ¢t = c for all time steps t, then Greedy Projection is
exactly the same as PGD which we have learned in-class [s06-2].
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Analyzing the Performance of the Algorithm

Definition

Given an algorithm A, and a convex programming problem
(F,{ct,c? ..}), if {x},x2,...,} are the vectors selected by A,
then the cost of A until t|me T is

The cost of a static feasible solution x € F until time T is

;
C(T)=> c'(x)
t=1

The regret of algorithm A until time T is

Ra(T) = Ca(T) — min C(T).

xeF

v
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Analyzing the Performance of the Algorithm

Theorem (Greedy Projection's regret)
If n: = 1/+/t, the regret of the Greedy Projection algorithm is

FI2VT 1
Re(T) < VT 4 (v — Lyvel
Pp— _ — t .
where | Fl| = max [~ ylla and [ Vel = __max [ VetCo)le
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Analyzing the Performance of the Algorithm

Proof

o We begin with arbitrary {c!, c?, ...}.
Running Greedy Projection, we obtain {x!, x?,...}.

@ Because ¢! is convex, for all x:

ct(x) > cf(x") + (Vci(xh)) - (x — xb).

@ Set x* to be a statically optimal vector, i.e., x* := arg mill_] C(T).
x€
Since x* € F, from the previous inequality we have

c'(x) = c(x") + (Vi (x) - (x* = x7).
@ subtract both sides from cf(x*), we get

cf(xf) = ¢'(x") < cf(x) = (c"(x") + (V' (x)) - (x" = xT)).
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Analyzing the Performance of the Algorithm

Proof (Continued)

@ Define linear function g*(x) := Vct(x?) - x. If we were to change
function ¢! to function g, the behavior of the algorithm will still be
the same (.- Vgi(x') = Vct(xh)).

That is, we will select the same {x!,x?, ...}.

@ Thus, we can rewrite the previous inequality

ef(x) = €f(x") < T — (T + (Ve () - (" —x))
as
ct(x) — cf(x") < g'(x") — g4 (x") 1= (xt — x") - Ve (x)

@ We will now bound the RHS of this inequality.
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Analyzing the Performance of the Algorithm

Proof (Continued)
o Define for all t, yt+1 := xt — ,Vct(x?).
@ Then, we can rewrite Greedy Projection as

X" = projp(x* — 0.Vt (xh)) = proje(y*™).

e By definition of y'*1, we have

(yt+1 _ X*)2 — ((Xt o X*) o ntVCt(Xt))2

= (x* = x*)2 = 2ne(x" = x*) - Vi (xF) + 02| Vet () 13

< (= x")? = 2e(x" = x7) - Vet (xF) + g | Vell3.
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Analyzing the Performance of the Algorithm

Proof (Continued)

@ Recall the following property of projection operator on convex sets,
which we have discussed in-class.!

Property (Projection on a convex set F is contracting)

For all y € R, for all x € F, (proje(y) — x)? < (y — x)2.

1A proof is given in Schneider, R. (2013). Convex Bodies: The Brunn—Minkowski Theory, page 9
https:/ /wikidocs.net/22434
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Analyzing the Performance of the Algorithm

Proof (Continued)

@ Using the previous inequality and this property, we have,
(1= )2 = (projp(y* 1) = x')2 < (= x)?
< (xF = x")? = 2ne(xF = x*) - Vet (xF) + ng ||V ell3.

@ Rearranging terms and dividing both sides by 2n;, we get

(x' —x*) - Vci(xh) <

1
< g (O =X = (=X P) 4 TV el

@ We conclude the following inequality, in which taking the summation
from t =1,..., T of the LHS will give regret Rg(T).

. 1 « X 7
cf(xt) — cf(x*) < e ((x" = x*) = (x"TT = x*)?) + fIIVCIB-
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Analyzing the Performance of the Algorithm

Proof (Continued)

@ By summing we get
T

1 .
Ra(T) < — (2 —a")? = (@ —a")?) . ,
Z 2t e Now, if we define n; = 1/1/t
”—*\ el T B4
1 . r e 2771‘, = Z—
< Tll('rl —x )2 o %(‘ITJA — )2 o = \/E
1< 1 . o T at
- R < 1+ -
22;(w - 1) oo =1Vt
T
Vel § < 1+ [2vi]
+— 5 Mt 1
t=1 . < Qﬁ— L
11 11
< |IF|P b EZ(*— ) . . .
= N -1 @ Plugging this to the previous
Hv 1 ZT: inequality finishes the proof. [
)1 nv( 1 &
< IFIPg -+ Z
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Analyzing the Performance of the Algorithm

If n: = 1/+\/t, the regret of the Greedy Projection algorithm is

re(m) < VT (7~ Lyvels

where | FI| == max |~ ylls and |Vl == __max [Vei(o)a

@ Therefore, the average regret of Greedy Projection approaches to 0

Re(T
lim sup 6(T)

=0.
T—oo T

@ The first term of the bound is because we might begin on the wrong
side of F.

@ The second part is a result of the fact that we always respond (xt*1)
after we see the cost function (c?).
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Lazy Projection

@ This section is only in the full version of the paper.!

Algorithm 2 (Lazy Projection)

Select an arbitrary x* € F and a sequence of learning rates
n1,M2, ... € RT. Define y! = x1. In time step t, after receiving a cost
function cf, define y*+1:

y =yt — Vet (xh)

and select the vector

Xt = projr(yt*1).

L Online convex programming and generalized infinitesimal gradient ascent (Technical
Report CMU-CS-03-110). CMU
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Lazy Projection

Theorem (Lazy Projection's regret)

Given a constant learning rate 1), Lazy Projection’s regret is

IFIE  nlVel?T

R (T) <

The proof given is in the appendix of the full version of this paper.!

L Online convex programming and generalized infinitesimal gradient ascent (Technical
Report CMU-CS-03-110). CMU
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Greedy vs. Lazy

2

FIGURE 1. Graphical illustration of the greedy (dashed) and lazy
(solid) branches of the projected subgradient (PSG) method.

e Greedy variant: adds —Vf(x,) to x, and projects back to C if needed.

e Lazy variant: the gradient term —Vf(x,) is not added to x,, but to
the “unprojected” iterate y,. We only project to C in order to obtain

the algorithm’s next iterate.

Kwon, J.,& Mertikopoulos, P. (2014). A continuous-time approach to online optimization. Journal of Dynamics and

Games, 4(2):125-148, 2017
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Conclusion and Relevant Papers

@ This paper presents an online form of the standard gradient
descent from offline optimization: Online Gradient Descent (OGD)

@ This algorithm can guarantee O(ﬁ) regret for an arbitrary sequence
of differentiable convex functions.

@ Note: A sequence defined by algorithm A has “no-regret” if the
regret is sublinear as a function of T, i.e., Ra(T) = o(T).

@ How to improve the regret bound for strongly-convex losses?
E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for
online convex optimization. Machine Learning, 69:169-192, 2007
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Term Project Plan

o Week 7-8: Study Online Convex Optimization (OCO) framework

@ Week 9-10: Review recent papers related to OCO algorithms and its
applications

@ Week 11-12: Implement basic OCO algorithms via
Pytorch /Tensorflow

@ Week 13-14: Experiment regret convergence via datasets and apply
OCO algorithms as optimizers for specific machine learning problems
(e.g. SVM classification of MNIST dataset)

@ Week 15: Project presentation
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Term Project Plan

@ Week 9-10: Review recent papers related to OCO algorithms and its
applications e.g. Follow-The-Leader

@ Week 11-12: Implement basic OCO algorithms via
Pytorch /Tensorflow

@ Week 13-14: Experiment regret convergence via datasets and apply
OCO algorithms as optimizers for specific machine learning problems
(e.g. SVM classification of MNIST dataset)

@ Week 15: Project presentation
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