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Introduction

Convex programming consists of a convex feasible set F ⊂ Rn

and a convex cost function c : F → R.

Most of the methods and topics we discussed in-class were
optimization for machine learning under an offline environment, where
we have full access of the cost function, training data,..., beforehand.

We discuss online convex programming, in which an algorithm
faces a sequence of convex programming problems, each with
the same feasible set but different cost functions.

Each time the algorithm must choose a point before it observes
the cost function.
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Online Convex Programming

Definition

An convex programming problem consists of a convex feasible set
F ⊂ Rn and a convex cost function c : F → R.

Definition

An online convex programming problem consists of a convex feasible
set F ⊂ Rn and an infinite sequence {c1, c2, ...} where each ct : F → R is
a convex function.

Definition

At each time step t, an online convex programming algorithm selects a
vector x t ∈ F . After the vector is selected, it receives the cost function ct .
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Online Convex Programming

In online convex programming, all information (e.g. cost functions
ct for all time step t) is not available before decisions are made.

Therefore, online algorithms do not reach “solutions” (e.g. minima),
but instead achieve certain goals.

A measure of performance called regret is considered.

Average regret is the regret divided by T , the number of rounds.
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Online Convex Programming

The remainder of this paper is presented under the following assumptions.

1 The feasible set F is bounded.
That is, there exists N ∈ R such that ∀x , y ∈ F , ‖x − y‖2 ≤ N.

2 The feasible F is closed. That is, for all sequences {x1, x2, ...}
where x t ∈ F for all t, if there exists a x ∈ Rn such that x = lim

t→∞
x t ,

then x ∈ F .

3 The feasible set F is nonempty.

4 For all t, ct is differentiable1.

1We can relax this assumption in terms of the existence of subgradient as follows:
Given x , there exists a vector gx such that c t(y) ≥ c t(x) + gx(y − x) for all y .
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Online Convex Programming

The remainder of this paper is presented under the following assumptions.

5 There exists an N ∈ R such that for all t, for all x ∈ F ,
‖∇ct(x)‖2 ≤ N.

6 For all t, there exists an algorithm, given x , which produces ∇ct(x).

7 For all y ∈ Rn, there exists an algorithm which can produce the
projection of y onto F defined as projF (y) = arg minx∈F ‖x − y‖2.1

1This paper uses the notation P(y), but we shall use this one since we did in-class.
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Online Convex Programming

Algorithm 1 (Greedy Projection)

Select an arbitrary x1 ∈ F and a sequence of learning rates
η1, η2, ... ∈ R+. In time step t, after receiving a cost function ct , select the
next vector x t+1 according to:

x t+1 = projF (x t − ηt∇ct(x t)).

Note that if we happened to know that cost functions ct were actually
all identical, i.e., ct = c for all time steps t, then Greedy Projection is
exactly the same as PGD which we have learned in-class [s06-2].
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Analyzing the Performance of the Algorithm

Definition

Given an algorithm A, and a convex programming problem
(F , {c1, c2, ...}), if {x1, x2, ..., } are the vectors selected by A,
then the cost of A until time T is

CA(T ) =
T∑
t=1

ct(x t).

The cost of a static feasible solution x ∈ F until time T is

Cx(T ) =
T∑
t=1

ct(x).

The regret of algorithm A until time T is

RA(T ) = CA(T )−min
x∈F

Cx(T ).
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Analyzing the Performance of the Algorithm

Theorem (Greedy Projection’s regret)

If ηt = 1/
√
t, the regret of the Greedy Projection algorithm is

RG (T ) ≤ ‖F‖
2
√
T

2
+ (
√
T − 1

2
)‖∇c‖22

where ‖F‖ := max
x ,y∈F

‖x − y‖2 and ‖∇c‖ := max
x∈F ,t∈{1,2,...}

‖∇ct(x)‖2.
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Analyzing the Performance of the Algorithm

Proof

We begin with arbitrary {c1, c2, ...}.
Running Greedy Projection, we obtain {x1, x2, ...}.
Because ct is convex, for all x :

ct(x) ≥ ct(x t) + (∇ct(x t)) · (x − x t).

Set x∗ to be a statically optimal vector, i.e., x∗ := arg min
x∈F

Cx(T ).

Since x∗ ∈ F , from the previous inequality we have

ct(x∗) ≥ ct(x t) + (∇ct(x t)) · (x∗ − x t).

subtract both sides from ct(x t), we get

ct(x t)− ct(x∗) ≤ ct(x t)−
(
ct(x t) + (∇ct(x t)) · (x∗ − x t)

)
.
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Analyzing the Performance of the Algorithm

Proof (Continued)

Define linear function g t(x) := ∇ct(x t) · x . If we were to change
function ct to function g t , the behavior of the algorithm will still be
the same (∵ ∇g t(x t) = ∇ct(x t)).
That is, we will select the same {x1, x2, ...}.
Thus, we can rewrite the previous inequality

ct(x t)− ct(x∗) ≤��
��ct(x t)−

(
��

��ct(x t) + (∇ct(x t)) · (x∗ − x t)
)
.

as

ct(x t)− ct(x∗) ≤ g t(x t)− g t(x∗) := (x t − x∗) · ∇ct(x t).

We will now bound the RHS of this inequality.
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Analyzing the Performance of the Algorithm

Proof (Continued)

Define for all t, y t+1 := x t − ηt∇ct(x t).

Then, we can rewrite Greedy Projection as

x t+1 = projF (x t − ηt∇ct(x t)) = projF (y t+1).

By definition of y t+1, we have

(y t+1 − x∗)2 =
(
(x t − x∗)− ηt∇ct(x t)

)2
= (x t − x∗)2 − 2ηt(x

t − x∗) · ∇ct(x t) + η2t ‖∇ct(x t)‖22
≤ (x t − x∗)2 − 2ηt(x

t − x∗) · ∇ct(x t) + η2t ‖∇c‖22.
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Analyzing the Performance of the Algorithm

Proof (Continued)

Recall the following property of projection operator on convex sets,
which we have discussed in-class.1

Property (Projection on a convex set F is contracting)

For all y ∈ Rn, for all x ∈ F , (projF (y)− x)2 ≤ (y − x)2.

2

1
A proof is given in Schneider, R. (2013). Convex Bodies: The Brunn–Minkowski Theory, page 9

2
https://wikidocs.net/22434
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Analyzing the Performance of the Algorithm

Proof (Continued)

Using the previous inequality and this property, we have,

(x t+1 − x∗)2 = (projF (y t+1)− x∗)2 ≤ (y t+1 − x∗)2

≤ (x t − x∗)2 − 2ηt(x
t − x∗) · ∇ct(x t) + η2t ‖∇c‖22.

Rearranging terms and dividing both sides by 2ηt , we get

(x t − x∗) · ∇ct(x t) ≤ 1

2ηt

(
(x t − x∗)2 − (x t+1 − x∗)2

)
+
ηt
2
‖∇c‖22.

We conclude the following inequality, in which taking the summation
from t = 1, ...,T of the LHS will give regret RG (T ).

ct(x t)− ct(x∗) ≤ 1

2ηt

(
(x t − x∗)2 − (x t+1 − x∗)2

)
+
ηt
2
‖∇c‖22.
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Analyzing the Performance of the Algorithm

Proof (Continued)

By summing we get

Now, if we define ηt = 1/
√
t

Plugging this to the previous
inequality finishes the proof.
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Analyzing the Performance of the Algorithm

Theorem

If ηt = 1/
√
t, the regret of the Greedy Projection algorithm is

RG (T ) ≤ ‖F‖
2
√
T

2
+ (
√
T − 1

2
)‖∇c‖22

where ‖F‖ := max
x ,y∈F

‖x − y‖2 and ‖∇c‖ := max
x∈F ,t∈{1,2,...}

‖∇ct(x)‖2.

Therefore, the average regret of Greedy Projection approaches to 0

lim sup
T→∞

RG (T )

T
= 0.

The first term of the bound is because we might begin on the wrong
side of F .

The second part is a result of the fact that we always respond (x t+1)
after we see the cost function (ct).
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Lazy Projection

This section is only in the full version of the paper.1

Algorithm 2 (Lazy Projection)

Select an arbitrary x1 ∈ F and a sequence of learning rates
η1, η2, ... ∈ R+. Define y1 = x1. In time step t, after receiving a cost
function ct , define y t+1:

y t+1 = y t − ηt∇ct(x t)

and select the vector
x t+1 = projF (y t+1).

1Online convex programming and generalized infinitesimal gradient ascent (Technical
Report CMU-CS-03-110). CMU
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Lazy Projection

Theorem (Lazy Projection’s regret)

Given a constant learning rate η, Lazy Projection’s regret is

RL(T ) ≤ ‖F‖
2

2η
+
η‖∇c‖2T

2
.

The proof given is in the appendix of the full version of this paper.1

1Online convex programming and generalized infinitesimal gradient ascent (Technical
Report CMU-CS-03-110). CMU
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Greedy vs. Lazy

1

Greedy variant: adds −∇f (xn) to xn and projects back to C if needed.

Lazy variant: the gradient term −∇f (xn) is not added to xn, but to
the “unprojected” iterate yn. We only project to C in order to obtain
the algorithm’s next iterate.

1
Kwon, J.,& Mertikopoulos, P. (2014). A continuous-time approach to online optimization. Journal of Dynamics and

Games, 4(2):125–148, 2017
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Conclusion and Relevant Papers

This paper presents an online form of the standard gradient
descent from offline optimization: Online Gradient Descent (OGD)

This algorithm can guarantee O(
√
T ) regret for an arbitrary sequence

of differentiable convex functions.

Note: A sequence defined by algorithm A has “no-regret” if the
regret is sublinear as a function of T , i.e., RA(T ) = O(T ).

How to improve the regret bound for strongly-convex losses?
E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for
online convex optimization. Machine Learning, 69:169-192, 2007
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Term Project Plan

Week 7-8: Study Online Convex Optimization (OCO) framework

Week 9-10: Review recent papers related to OCO algorithms and its
applications

Week 11-12: Implement basic OCO algorithms via
Pytorch/Tensorflow

Week 13-14: Experiment regret convergence via datasets and apply
OCO algorithms as optimizers for specific machine learning problems
(e.g. SVM classification of MNIST dataset)

Week 15: Project presentation
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