CSED490Y

Adam: A Method for Stochastic Optimization

Group13; 20190829 Lee Taehui

1

INDEX 01 Introduction 02 Method 03 Experiment Results 04 Relation to Project

on Introduction

- A method for efficient stochastic optimization that only requires first-order gradients with little memory requirement.
- Combine the advantages of two recently popular methods: AdaGrad & RMSProp
- A versatile algorithm that scales to large-scale high-dimensional machine learning problems.

AdaGrad

$$\theta_t = \theta_{t-1} - \alpha \, \frac{g_t}{\sqrt{\sum_{i=1}^t g_i^2}}$$

RMSProp

$$G_t = \gamma G_{t-1} + (1 - \gamma)g_t^2$$
$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{G_t + \epsilon}} g_t$$

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates

Require: $f(\theta)$: Stochastic objective function with parameters θ

Require: θ_0 : Initial parameter vector

 $m_0 \leftarrow 0$ (Initialize 1st moment vector)

 $v_0 \leftarrow 0$ (Initialize 2nd moment vector)

 $t \leftarrow 0$ (Initialize timestep)

while θ_t not converged **do**

 $t \leftarrow t + 1$

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)

 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate)

 $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)

 $\widehat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate)

 $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate)

 $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters)

end while

return θ_t (Resulting parameters)

Adam's Update Rule

$$|\Delta_t| = \frac{\alpha \cdot \widehat{m_t}}{\sqrt{\widehat{v_t}}}$$

$$\Delta_t | \leq \frac{\alpha \cdot (1 - \beta_1)}{\sqrt{(1 - \beta_2)}} \qquad in the case (1 - \beta_1) > \sqrt{1 - \beta_2}$$

 $|\Delta_t| \leq \alpha$ otherwise

$$\rightarrow |\Delta_t| < \approx \alpha$$

Initialization Bias Correction

$$\widehat{m_t} = \frac{m_t}{1 - \beta_1^t} \qquad \qquad \widehat{v_t} = \frac{v_t}{1 - \beta_2^t}$$

$$\mathbb{E}[v_t] = \mathbb{E}\left[(1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2 \right]$$
$$= \mathbb{E}[g_t^2] \cdot (1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} + \zeta$$
$$= \mathbb{E}[g_t^2] \cdot (1 - \beta_2^t) + \zeta$$

⁰³ Experiment Results

Experiment Results

Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

Figure 2: Training of multilayer neural networks on MNIST images.

(a) Neural networks using dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014) 12

Experiment Results

Figure 3: Effect of bias-correction terms (red line) versus no bias correction terms (green line) after 10 epochs (left) and 100 epochs (right) on the loss (y-axes) when learning a Variational AutoEncoder (VAE) (Kingma & Welling, 2013), for different settings of stepsize α (x-axes) and hyperparameters β1 and β2.

Relation to Project

- Deeper understanding of SGD and its optimization techniques
- Implementation Adam optimizer and image classifier using Adam
- Compare Adam with other Optimizers such as SGD, Adagrad, RMSProp, …
- Propose ideas for a better optimization method from Adam

Thank You