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• Empirical observations from prior works
 1. Multi-head self-attentions (MSAs) improve the predictive performance 

of CNNs

 2. ViTs are robust against data corruptions, image occlusions, and 
adversarial attacks

 3. MSAs closer to the last layer significantly improve predictive 
performance
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• Three key questions
 1. Multi-head self-attentions (MSAs) improve the predictive performance 

of CNNs
→ What properties of MSAs do we need to improve optimization?

 2. ViTs are robust against data corruptions, image occlusions, and 
adversarial attacks

→ Do MSAs act like Convs?

 3. MSAs closer to the last layer significantly improve predictive 
performance

→ How can we harmonize MSAs with Convs?
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• The stronger the inductive biases, the stronger the representations.
 Contrary to our expectations, the stronger the inductive bias, the lower 

both test error and the training negative log-likelihood (NLL)
 Weak inductive biases disrupt NN training
 Models with strong inductive biases (CNNs) show better performance 

compared to models with weak inductive biases (MSAs)
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• ViT does not overfit small training datasets.
 As the size of the dataset decreases, not only the error but also NLL 

increases
 If ViT is overfitted to small training datasets, NLL of train dataset should 

not increase.
 ViT’s poor performance in small data regimes is not due to overfitting
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• What makes ViT show poor performance in small data regimes?  

• → ViT’s non-convex losses lead to poor performance
 The loss function of ViT is non-convex, while that of ResNet is strongly 

(near-)convex.
 ViT has a number of negative Hessian eigenvalues, while ResNet only 

has a few in the early stage of training
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• Loss landscape smoothing methods aids in ViT training.
 Replace class (CLS) token to Global average pooling (GAP) classifier
 GAP classifier suppresses negative Hessian max eigenvalues in an early 

phase of training
 GAP classifier improves the accuracy by +2.7%
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• MSAs flatten the loss landscape.
 MSAs reduce the magnitude of Hessian eigenvalues.
 Helps NNs learn better representations
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• A key feature of MSAs is data specificity (not long-range dependency).
 The two distinguishing features of MSAs are long-range dependency and 

data specificity
 The long-rage dependency hinders NN optimization
 5 x 5 kernel (Local MSA) outperforms 8 x 8 kernel (Global MSA)
 3 x 3 is worse than 5 x 5 but better than 8 x 8 kernel
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• A key feature of MSAs is data specificity (not long-range dependency).
 The strong locality inductive bias not only reduce computational 

complexity but also aid in optimization by convexifying the loss landscape.
 5 x 5 is better than 8 x 8 (unnecessary degrees of freedom)
 5 x 5 is better than 3 x 3 (ensembles a larger number of feature map points)
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• MSAs and Convs exhibit opposite behaviors
 MSAs reduce high-frequency signals, while Convs amplifies high 

frequency components
 MSAs : low-pass filter / Convs : high-pass filters

• MSAs and Convs are complementary



How can we harmonize MSAs with Convs?

14 of 18

• Applying spatial smoothing at the end of a stage improves accuracy

• The authors propose an alternating pattern of Convs and MSAs 
network (AlterNet)
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• AlterNet outperforms CNNs not only on large datasets but also on 
small datasets
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Our project experiment plan
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• We want to check
 Effect of flattening loss landscape on ViT
 Robustness of ViT in large dataset 

by comparing
 Training speed and final accuracy

of ResNet and ViT in
 different optimizers
 and their hyperparameter settings



Thank you
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