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Overview

1. Paper presentation

2. Term project progress
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A rapidly convergent descent method
for minimization

R. Fletcher and M. J. D. Powell

The computer journal, 1963.
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Preliminary: Newton’s method

We are interested in finding the minimum of an unrestricted, twice-differentiable at all
points, and convex function f :

min
x

f (x)

Gradient descent:
xt+1 = xt − η∇f (xt)

Newton’s method:
xt+1 = xt − G (xt)

−1∇f (xt),

where G is the second-order derivative.
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Preliminary: Newton’s method (continued)

Taylor series second-order approximation of f at a local point:

f (x) ≈ f (xt) +∇f (xt)(x − xt) +
1

2
∇2f (xt)(x − xt)

2

The minimum of f (x) is found by setting its gradient to 0:

∇f (x) = ∇f (xt) +∇2f (xt)(x − xt)

= 0

⇔ x = xt − G (xt)
−1∇f (xt)

This works because the second-order terms in the Taylor series expansion dominate near
the minimum.
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Quasi-Newton method

Computing G (xt)
−1 is extremely expensive.

• Computing Hessian takes O(n2).

• Matrix inverse takes O(n3).

Solution: let us approximate G−1(xt) iteratively.

• Let us denote the approximation as Ht :≈ G−1(xt).

• xt+1 = xt − Ht∇f (xt) for each tth iteration

• Relevant method [Householder 1953] frequently fails to converge from a poor
approximation to the minimum.
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Secant equation for approximating Hessian

Recall the first-order derivative:

d

dx
f (x) = lim

△x→0

f (x +△x)− f (x)

x +△x − x

Approximating the second-order derivative of Gt ≈ ∇2f (xt):

Gt+1 ≈
∇f (xt+1)−∇f (xt)

xt+1 − xt

Gt+1(xt+1 − xt) ≈ ∇f (xt+1)−∇f (xt)

By setting Ht+1 := G−1
t+1, s := xt+1 − xt and y := ∇f (xt+1)−∇f (xt):

Ht+1y = s
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Symmetric rank-1 update (Davidon) 1

Assumption: Ht+1 from Ht follows rank-1 update such as:

Ht+1 = Ht + auu⊤,

where a is a scalar value and u is an arbitrary vector.
Combining the secant equation Ht+1y = s and setting u = α(Hty − s) leads to:

Hty + a(α(Hty − s))(α(Hty − s))⊤y = s.

⇒ Ht+1 = Ht +
(s − Hty)(s − Hty)

⊤

(s − Hty)⊤y

This update has following limitations:

• (s − Hty)
⊤y ≈ 0 may fail to update.

• Ht is not guaranteed to be possitive semi-definite.
1Derivation taken from a lecture note, CMU [Javier Pẽna 2016]
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Symmetric rank-2 update
(Davidon-Fletcher-Powell)

Assumption: Ht+1 from Ht follows rank-2 update such as:

Ht+1 = Ht + auu⊤ + bvv⊤

Ht+1y = Hty + auu⊤y + bvv⊤y = s

⇔ s − Hty = au⊤yu + bv⊤yv

where a and b are scalar values and u and v are arbitrary vectors.
By setting u := s and v := Hty :

Ht+1 = Ht −
Htyy

⊤Ht

y⊤Hty
+

ss⊤

y⊤s
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Stability
Ht is positive definite → the convergence is stable.
Let z be an arbitrary vector.

Ht+1 = Ht −
Htyy

⊤Ht

y⊤Hty
+

ss⊤

y⊤s

⇒ z⊤Ht+1z = z⊤Htz −
z⊤Htyy

⊤Htz

y⊤Hty
+

z⊤ss⊤z

y⊤s

=
p⊤pq⊤q − (p⊤q)2

q⊤q
+

(s⊤z)2

y⊤s
where p = H

1/2
t z and q = H

1/2
t y

≥ (s⊤z)2

y⊤s

> 0

on account of Schwartz’s inequality.
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Experiment

Function (1):
• f (x1, x2) = 100(x2 − x21 )

2 + (1− x1)
2.

• This function is difficult to minimize on account of its having a steep sided valley
following x21 = x2.

Function (2):
• f (x1, x2, x3) = 100[x3 − 10θ(x1, x2)]

2 + [r(x1, x2)− 1]2 + x23 .

• 2πθ(x1, x2) =

{
arctan(x2/x1) if x1 > 0,

π + arctan(x2/x1) otherwise.

• r(x1, x2) = (x21 + x22 )
1/2

• This function has a helical valley in the x3 direction with pitch 10 and radius 1.
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Experiment: function (1)

• f (x1, x2) = 100(x2 − x21 )
2 + (1− x1)

2.

• min f (x1, x2) = (1, 1)
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Experiment: function (2)
• f (x1, x2, x3) = 100[x3 − 10θ(x1, x2)]

2 + [r(x1, x2)− 1]2 + x23 .
• min f (x1, x2, x3) = (1, 0, 0)
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Conclusion

Takeaway:

• This paper presents a Quasi-Newton method that iteratively approximates the
inverse of Hessian using rank-2 update.

What I learned from reading this paper:

• Valuable experience of reading a classic paper

• Not easy to fully understand due to classical notations and unkind writing.

• Studied background of the second-order gradient methods.
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Midterm progress
Analysis on second-order optimization method:

Newton’s and Quasi-Newton method
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The goal of the project

Understanding & in-depth analysis on second-order gradient methods.

Three representative second-order gradient methods that we chose are:

• Vanilla Newton’s method

• A Quasi-Newton method (DFP [Fletcher and Powell 1963])

• A recent method (AdaHessian [Yao et al. 2021])

We will implement these methods and analyze them in two-variate convex functions.
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Progress

• Studied the background of second-order methods.

• Implemented code skeleton
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Plan

• Apr. 14th - Apr. 30th : Survey & study

• May. 1st - May. 19th : Implement Newton’s, Quasi-Newton, AdaHessian method

• May. 20th - May. 26th : Implement evaluation pipeline.

• May. 26th - Jun. 1st : Analysis

• Jun. 2nd - Jun. 4th : Final report & prepare for presentation

18 / 22



References

Javier Pẽna (2016)
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Thank you

• Any questions?

20 / 22



21 / 22



Stability (continued)

Ht is positive definite → the convergence is stable.
Let z be an arbitrary vector.

Ht+1 = Ht −
Htyy

⊤Ht

y⊤Hty
+

ss⊤

y⊤s

≥ (s⊤z)2

y⊤s

y⊤s = (∇f (xt+1)−∇f (xt))
⊤(xt+1 − xt)

= −∇f (xt)
⊤(xt+1 − xt)

= ∇f (xt)
⊤Ht∇f (xt)

> 0
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