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Overview

1. Paper presentation

2. Term project progress
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A rapidly convergent descent method
for minimization

R. Fletcher and M. J. D. Powell
The computer journal, 1963.
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Preliminary: Newton’s method

We are interested in finding the minimum of an unrestricted, twice-differentiable at all
points, and convex function f:
min f(x)

X

Gradient descent:
Xe+1 = Xt — NV F(xt)

Newton’s method:
Xe41 = xe — G(x) TV F(x),

where G is the second-order derivative.
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Preliminary: Newton’s method (continued)

Taylor series second-order approximation of f at a local point:
1
f(x) ~ f(xt) + VF(xe)(x — x¢) + 5v2f(xt)(x — x¢)?

The minimum of f(x) is found by setting its gradient to O:

VF(x) = VF(xe) + V2 (xt)(x — x¢)
=0
& x=xt — G(x)'VF(x)
This works because the second-order terms in the Taylor series expansion dominate near

the minimum.
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Quasi-Newton method

Computing G(x;)~! is extremely expensive.
e Computing Hessian takes O(n?).

® Matrix inverse takes O(n?).

Solution: let us approximate G ~1(x;) iteratively.
® Let us denote the approximation as H; i~ G~1(x;).
® x;11=x; — H;Vf(x) for each t'" iteration
® Relevant method [Householder 1953] frequently fails to converge from a poor
approximation to the minimum.
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Secant equation for approximating Hessian

Recall the first-order derivative:

d . f(x+ Ax) —f(x)

&f(x) - Ainlo X+ Ax — x

Approximating the second-order derivative of G; ~ V?f(x;):

Vf(Xt+1) — Vf(Xt)
Xt4+1 — Xt

Ge1(Xer1 — xe) & VF(xer1) — VI(x)

Giy1 &

By setting Hyy1:= G, 5 := xeq1 — X and y := VF(xeq1) — VF(xe):

Ht+]_y =S
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Symmetric rank-1 update (Davidon) !

Assumption: H;yj from H; follows rank-1 update such as:
Hey1 = He +auu’,

where a is a scalar value and u is an arbitrary vector.

Combining the secant equation H:y1y = s and setting u = a(H:y — s) leads to:

Hey + a(a(Hry — ))(a(Hey = 5)) Ty = s.
(s — Hey)(s — th)‘l'
(s—Hey)Ty

= Hii1 = He +

This update has following limitations:
® (s — H:y)"y ~ 0 may fail to update.
® H, is not guaranteed to be possitive semi-definite.

!Derivation taken from a lecture note, CMU [Javier P&na 2016]
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Symmetric rank-2 update
(Davidon-Fletcher-Powell)

Assumption: Hyy1 from H; follows rank-2 update such as:

Hip1 = He + auu’ + bw
Hip1y = Hyy +auu’y + bw'y =s
& s—Hy =au' yu+bv'yv
where a and b are scalar values and u and v are arbitrary vectors.
By setting u:=s and v := H,;y:

Ht_ny Ht + SST

Ht+1 = Ht -

yTHy  yTs
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Stability
H; is positive definite — the convergence is stable.
Let z be an arbitrary vector.

thyT Ht SST
yTHy  yTs

Ht+1 = H; —

z'Hiyyy "Hiz  zTss'z

= zTHt+1z = zTth —

ToaTa— (o7 a)2 Tz2)?
_ppPea—(P A (s 28 oo po K2 and q= Y2y
q'q y's
. (5T2)2
>0

on account of Schwartz's inequality.
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Experiment

Function (1):
® f(x1,x2) = 100(x2 — x2)? + (1 — x1)>.
® This function is difficult to minimize on account of its having a steep sided valley
following x2 = x,.

Function (2):
L f"(Xl7 X2, X3) = 100[X3 — 100(X1, X2)]2 + [I’(Xl7 X2) — 1]2 + X??.
o 200(x0, x0) = arctan(xy/x1) if x>0, .
m + arctan(xa/x;) otherwise.
° r(xi,x) = +x3)"?
® This function has a helical valley in the x3 direction with pitch 10 and radius 1.
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Experiment: function (1)

® f(x1,%) = 100(x2 — x2)> + (1 — x1)2.
® minf(xy,x) =(1,1)

4000
3000}
2000%

1000%
074

Table 1

A comparison in two dimensions

STEEPEST

POWELL’S

EQUIVALENT OUR METHOD
Fonw | Sy | e
0 24-200 24-200 24200
3 3-704 3-643 3-687
[ 3-339 2-898 1-605
9 3-077 2-195 0-745
12 2-869 1-412 0-196
15 2-689 0-831 0-012
18 2-529 0-432 1 x 10-%
21 2-383 0-182 —_
24 2:247 0-052 —
27 2-118 0-004 —
30 1-994 5x 10-3 —
33 1-873 8 x 10— —
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Experiment: function (2)

L f(Xl,X2,X3) = 100[X3 — 100(X1,X2)]2 + [r(xl,x2) — 1]2 + Xg.

® min f(Xl,Xz,X3) = (1,0,0)

Table 3

A function with a steep-sided helical valley

3

X1

X2

X3

CONOAMAEWLN—~O

—1-000
—1:000
—0-023
—0-856
—0-372
—~0-499
—0-314
0-059
0-146
0-774
0-746
0-894
0-994
0-994
1-017
0-997
1-002

1-000

0-000
2-278
2-004
1-559
1-127
0-908
0-900
1-069
1-086
0-725
0-706
0-496
0-298
0-191
0-085
0-070
0-009
0-002

10-3

0-000
1-431
2-649
3-429
3-319
3-285
3-075
2-408
2-261
1-218
1-242
0:772
0-441
0-317
0-133
0-110
0-014
0-040

10-3

13/22



Conclusion

Takeaway:

® This paper presents a Quasi-Newton method that iteratively approximates the
inverse of Hessian using rank-2 update.

What | learned from reading this paper:
® Valuable experience of reading a classic paper
® Not easy to fully understand due to classical notations and unkind writing.

® Studied background of the second-order gradient methods.
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Midterm progress
Analysis on second-order optimization method:
Newton's and Quasi-Newton method
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The goal of the project

Understanding & in-depth analysis on second-order gradient methods.

Three representative second-order gradient methods that we chose are:
® Vanilla Newton's method
® A Quasi-Newton method (DFP [Fletcher and Powell 1963])
® A recent method (AdaHessian [Yao et al. 2021])

We will implement these methods and analyze them in two-variate convex functions.
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Progress

e Studied the background of second-order methods.

® |Implemented code skeleton
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Plan

o —Apr—14th—Apr—30th—+Survey-&-study

® May. 1st - May. 19th : Implement Newton's, Quasi-Newton, AdaHessian method
® May. 20th - May. 26th : Implement evaluation pipeline.

e May. 26th - Jun. 1st : Analysis

® Jun. 2nd - Jun. 4th : Final report & prepare for presentation
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Thank you

® Any questions?

20/22



21/22



Stability (continued)

H; is positive definite — the convergence is stable.
Let z be an arbitrary vector.

y's = (VF(xes1) = V()" (xee1 — xe)
= —Vf(Xt)T(XtJrl — Xt)
= Vf(xt)THtVf(xt)
>0
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