# Random Walk Gradient Descent for Decentralized Learning on Graphs

by Ghadir Ayache, Salim El Rouayheb

2019 IEEE IPDPSW

Group 8

Jihun Shin

### Random Walk

• Representation of random movements at every moment on a mathematical space

• Discrete random walks are widely used in situations where discrete mathematics is applied

#### Random Walk

Example: Random walk on the 1-dimensional integer line

- starts at 0
- ullet moves +1 or 1 with same probability at each steps



#### Random Walk

Each random step  $Z_i$  is either 1 or -1

For the series of random steps  $S_n$ ,

•  $E[S_n] = 0$ 

• 
$$E[S_n^2] = n$$



## Model

We consider a network of N interacting nodes represented by an undirected connected graph  ${\cal G}(V,E).$ 

Interested in learning a global model  $w^* \in \mathcal{W}$  that minimizes an average loss function  $f(w) = \frac{1}{N} \sum_{i=1}^{N} f_i(w)$ , subject to  $w \in \mathcal{W}$ .

 $f_i(\cdot)$  is the local loss function at node *i* and  $\mathcal{W}$  is a convex compact set.

The goal is to find  $w^* \in \mathcal{W}$  satisfying  $w^* = \arg \min_{w \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^N f_i(w)$ .

## Algorithms

Probability for moving from a node v to a node u in V:  $Q(v,u) = \frac{1}{deg(v)}$ 

Acceptance probability of a proposed jump from node v to node u:  $a(v, u) = \min\left(1, \frac{\pi(u)}{\pi(v)} \frac{Q(u,v)}{Q(v,u)}\right)$ , while desired stationary distribution is  $\pi$ 

Transition matrix P:  

$$P(v, u) = Q(v, u)a(v, u)$$

$$= \min \left(Q(v, u), Q(u, v)\frac{\pi(u)}{\pi(v)}\right)$$

## Algorithms

Algorithm 1 Uniform Random Walk GD **Initialization:** Initial node  $v_0$ , Initial model  $w_0$ for t = 0 to T do Choose node u uniformly at random from  $\mathcal{N}(v_t)$ . Generate  $p \sim U(0, 1)$  where U is the uniform distribution. if  $p \leq \min\left\{1, \frac{deg(v_t)}{deg(u)}\right\}$  then  $v_{t+1} \leftarrow u$ else  $v_{t+1} \leftarrow v_t$ end if  $w_{t+1} = \Pi_{\mathcal{W}} \left( w_t - \gamma_t \nabla f_{v_{t+1}} \left( w_t \right) \right)$ end for **Return:**  $w_T$  and  $\bar{w}_T = \frac{\sum_{i=1}^T (\gamma_i w_i)}{T}$ . {returned to node 1}  $\sum_{j=1} \gamma_j$ 



Fig. 2. Comparison of the Uniform RW SGD, Weighted RW SGD and the Gossip SGD on a chordal cycle graph of 20 nodes and 60 edges.

## Relating to Our Project

Topic: Study and Application of Random Walk in Machine Learning In this paper, I mainly checked the followings

- How the random walking can be applied to gradient descent algorithm
- Can random walk give us better performance

The way how to apply random walk outside of the graph must be considered.