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AutoML

AutoML is a concept to automatically design machine learning
method by machine learning.

1. Automated Feature Extraction
• Find meaningful features, but not useful for deep learning

2. Architecture Search
• Find optimal network structure

3. Hyperparameter Optimization
• Predict hyperparameters such as batch size, learning rate, etc.
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Neural Architecture Search (NAS)

Neural Architecture Search is a concept to automatically search
neural architecture in specific search space.

• Search Space
• All candidate architectures

• Search Strategy
• How to search?

• Performance Estimation Strategy
• How to evaluate performance of an architecture?
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Early Stage NAS

In early stage NAS, because of discrete objective of NAS, many
frameworks use reinforcement learning[7, 8, 4] or evolutionary
algorithm[5].

However, these methods require a lots of resources and time.

• NASRL [7]
• 800 GPUs for 1 month

• NASNet [8]
• 450 GPUs for 3 days

• AmoebaNet [5]
• 3150 GPU days
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DARTS: Differentiable
ARchiTecture Search



Continuous Relaxation

Neural Architecture Search is originally discrete optimization
problem.

• We should select architecture components for a network!

How about relax this constraint?

• Discrete optimization→ Continuous optimization
• Use continuous parameters to represent architecture selection.
• Convert continuous parameters to an discrete neural
architecture in final step.

This relaxation significantly reduce the search cost!
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Neural Architecture Search Formulation

With relaxed constraints, we can formulate neural architecture
search as follows.

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminwLtrain(w,α)

• w: weight parameters
• α: architecture parameters
• w∗(α): optimal weight parameters for architecture α
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Supernet

However, structure of neural networks are various.

• How can we determine the structure with α?

We restrict our search space to supernet.

• Train single network which is superposition of various networks
• Can make an architecture by selecting partial components from
supernet.
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Supernet (Network-level)

• Normal Cell
• Maintain resolution
• Maintain the number of channels

• Reduction Cell
• Reduce resolution by 1/4
• Double the number of channels
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Supernet (Cell-level)

Each cell is directed acyclic graph (DAG).

• Node: intermediate feature map
• Edge: mixed operation - weighted sum of candidate operations
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Mixed Operation

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x)

• O: operation set
• o: operation

• e.g. sep conv 3x3, skip connection, zeroize
• α: architecture parameters
• α(i,j)

o : architecture parameter for operation o of (i, j) edge

9



Architecture Derivation

Cell derivation

After train the supernet...

1. For each edge, choose operation o which has the largest
architecture parameter αo

2. For each node, choose operation which has top-2 architecture
parameter.
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Architecture Derivation

Architecture Construction
• By stacking searched cells, we can
get an architecture.

• e.g. N = 6 in the paper
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Issue in Gradient Descent Based Optimization

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminwLtrain(w,α)

Now we have proper model and objective.

Can we optimize original objective with gradient descent?

• No!
• Formulation for NAS can not be directly used!

• The number of candidates architecture is too many.
• Training of each architecture is not easy.
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Gradient Approximation

To directly use architecture gradient ∇αLval(w
∗(α), α) is infeasible.

So, let approximate the gradient ∇αLval(w
∗(α), α)!

• Assumption 1: w∗ = w

• Current weight parameter is optimal weight parameter.
• Easy and low cost optimization process

∇αLval(w
∗(α), α) ≈ ∇αLval(w,α)

• Assumption 2: w∗ = w − ξ∇wLtrain(w,α)

• By single training step, we can get optimal weight parameters.
• Complex and high cost optimization process

∇αLval(w
∗(α), α) ≈ ∇αLval(w − ξ∇wLtrain(w,α), α)

= ∇αLval(w
′, α)− ξ∇2

α,wLtrain(w,α)∇w′L(w′, α)

• w′ = w − ξ∇Ltrain(w,α)

13



Experiment Results
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Optimizer Combination Analysis
for Differentiable Neural
Architecture Search



Fixed Optimizer Setting

DARTS[3] and its variants[1, 2] use fixed optimizer setting to search
architecture in supernet.

• weight parameters: SGD
• architecture parameters: Adam

However, is it the optimal choice? Is there any room for
improvement?

• No specific experiments on this
• No theoretical guarantee
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Plan for Project

Some study [6] show that the Adam optimizer makes some
regularization techniques meaningless, which reduces the
generalization performance of the architecture being explored.

To extend this, I will investigate effect of optimizer setting in
architecture search with original DARTS[3], Smooth DARTS[1] and
DARTS-[2].

• Momentum
• e.g SGD with momentum

• Adaptive gradient methods
• e.g. RMSProp, Adam
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