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a quick recap of the course logistics
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Optimization everywhere

Optimization is used in many decision science and in the analysis of physical systems.
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Optimization everywhere

Optimization is used in many decision science and in the analysis of physical systems.

Some examples:
» investment portfoilo for high rate of return
» manufacturing for efficient design and operation of production processes
» circuit design to optimize the performance of electronic devices

: q . .
—» computer program to learn from ‘experience with respect to a certain task
’W\/VW
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Transportation problem

Suppose you want to optimize for a transportation problem.

- » There are two factories (F1, F») and a dozen
v retail outlets (Rl, R, .., R12).

» Requirements: agmount of production, demand,
cost of shipping, etc.
® : » Determine how much of the product to ship
o’ from each factory to each outlet (x;;) so as to
' satisfy all the requirements and minfimize cost?
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Optimization for machine learning

It's about finding settings for some parameters of a system to optimize something.
A arNnANA—~"— NAne~—
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Optimization for machine learning
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Optimization for machine learning

It's about finding settings for some parameters of a system to optimize something.
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Optimization for machine learning

It's about finding settings for some parameters of a system to optimize something.

e
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Optimization for machine learning

4

In machine learning, we often attempt to mimize some cost/error/risk/loss.
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9/24



Optimization for machine learning

In machine learning, we often attempt to mimize some cost/error/risk/loss.

9/24



Optimization for machine learning

In machine learning, we often attempt to mimize some cost/error/risk/loss.

9/24
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Elements of optimization process

Objective
» a quantitative measure of the performance of the system under study

> profit, time, potential energy, or any quantity or combination of quantities that
can be represented by a single number
N — ———
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Elements of optimization process

l (
Variables or unknowns / par aw &Rk
» certain characteristics of the system that the objective depends on
» find the best possible settings for these variables

> often variables are restricted or constrained
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Elements of optimization process

Modeling ‘ \ \
» the process of identifying objective, variables, and constraints for a given problem
» construction of an appropriate model is perhaps the most important step
> t,g/o\_s,im_gisli_g_._not give useful insights into the practical problem

» too complex, too difficult to solve
W\/\N\r
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Elements of optimization process

Optimization algorithm
» usually with the help of a computer
» no universal algorithm; rather}‘ea/'@ie/cl_E) a particular type of problem
» the responsibility of choosing which algorithm falls on the user

» determines how fast or slow we can find a solution or whether we can find it at all
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Elements of optimization process

Optimality conditions

» to check that the current set of variables is indeed the solution of the problem
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Mathematical formulation

An optimization problem:

: X
[xrgg]" f\(X)

s.t. ¢ci(x) =0, i €€,
7 G(x) >0, iel.

AT NN,
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Mathematical formulation

An optimization problem:

min f(x)
xXER"
s.t. ci(x) =0, i €€,
C,'(X) >0, el
\

» x: variables, unknowns, parameters
» f: objective function
» ¢;: constraint functions

» £ and Z: set of indices for equality and inequality constraints

-— —
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Mathematical formulation

Example:

— ] /—*——r
_ _1\2 X A
min (x; — 2)° + (xp — 1) X = (

}ﬁ////{j/ Fx) = 3‘
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Mathematical formulation

Example: AER

<rpin (x1 —2)% + (xo — 1)?

s.t. xf —x3 <0,

x1+x <2
Haaamzwn—2f+09—n?xztj dw—ligﬂ=[<2f2?§31'

T=1{1,2), =0
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Mathematical formulation

Example: o y A

min (x; — 2 (xo — 1)2

stx—x2<0 o
X1—|—x2<2 l \

Here, f(x) = (x1 —2)* + (x2 — 1)%, x = [Xll' ) = [CI(X)] N [—;1Xi2 j<r2>:2-(;<()><) '

CQ()()
Z={1,2}, E=0.

Can we illustrate this? £
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Transportation problem

Suppose you want to optimize for a transportation problem.

’ R Modeling:
:R » a;: amount of product F; produces each week

» bj: weekly demand of the product by R;

<y

» cji: cost of shipping the product from F; to R;
o Ry -7 » Xx;;: amount of product shipped from F; to R;

ol
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Transportation problem

Writing into a mathematical optimization forumation

12 P
s.t ZXU<3” i=12, F1
2
d xg= by, j=1,..12,
i=1

x>0, i=12 j=1,.,12
v

» a.k.a. linear programming

» may turn into non-linear programming with additional conditions
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Various forms

Constrained optimization (vs unconstrained)
» When there are constraints on the variables.
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» When there are constraints on the variables.
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» When variables only make sense to be discrete values.
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Various forms

/ Constrained optimization (vs unconstrained)

» When there are constraints on the variables.

X Discrete optimization (vs continuous)

» When variables only make sense to be discrete values.

v/ Stochastic optimization (vs deterministic)

» When underlying model cannot be fully specified at the time of formulation.

v~ Lonv optimizati@](vs nonconvex)

» When objective and constraints are convex.
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Optimization algorithms

How they operate?
» iterative: begin with an initial guess of the variable x and generate a sequence of
improved estimates until they terminate, hopefully at a solution

» various strategies for moving from one iterate to the next
» can use information gathered at previous iterations

» make use of the first or second derivatives of the objective function
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Optimization algorithms

Properties of good optimization algorithms:

» Robustness: They should perform well on a wide variety of problems in their class,
for all reasonable values of the starting point.

» Efficiency: They should not require excessive computer time or storage.

» Accuracy: They should be able to identify a solution with precision, without being
overly sensitive to errors in the data or to the arithmetic rounding errors that
occur when the algorithm is implemented on a computer.
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Any questions?
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Credits

Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
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