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Linear algebra

Vector x 2 Rn

I x = (x1, ..., xn)

I length and direction

I column vectors, row vectors
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Linear algebra

p-norm of vector x 2 Rn where 1  p  1:

kxkp :=

✓ nX

i=1

|xi |p
◆ 1

p

.

I p = 1

I p = 2

I p = 1
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Linear algebra

Subspace

The subset S ⇢ Rn is a subspace of Rn if the following property holds: If x and y are
any two elements of S, then

↵x + �y 2 S, 8↵,� 2 R .

(i.e., set closed under addition and scaling)
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Linear algebra

Span

{s1, s2, ..., sk} is a spanning set for S if any vector s 2 S can be written as

s = ↵1s1 + ↵2s2 + ...+ ↵ksk ,

for some ↵1,↵2, ...,↵k .
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Linear algebra

Linear independence

A set of vectors x1, x2, ..., xk 2 Rn is called linearly independent if there are no
↵1,↵2, ...,↵k 2 R such that

↵1x1 + ↵2x2 + ...+ ↵kxk = 0 ,

except ↵1 = ↵2 = ... = ↵k = 0.

(i.e., x1, x2, ..., xk are linearly independent if none of them can be written as a linear
combination of the others.)
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Linear algebra

Basis

If {x1, ..., xk} are linearly independent & span X , we call them a basis of X

I k (the number of elements in the basis) is referred to as the dimension of X , and
denoted by dim(X ).

I There are many ways to choose a basis of X in general, but that all bases contain
the same nubmer of vectors.
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Linear algebra

Inner product / dot product

u · v = hu, vi = u>v =
nX

i=1

uivi
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Linear algebra

Angle between u and v

cos ✓ =
hu, vi

kuk2kvk2

I If they are perpendicular, hu, vi = 0.
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Linear algebra

Projection of v onto u

u =
hv , ui
kuk22

u
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Linear algebra

Cauchy-Schwarz inequality
|u>v |  kuk2kvk2

I Two sides are equal i↵ u and v are linearly dependent.
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Linear algebra

Triangle inequality
ku + vk2  kuk2 + kvk2
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Linear algebra

Outer product

u ⌦ v = uv> =

2

6664

u1v1 u1v2 ... u1vn
u2v1 u2v2 ... u2vn
...

...
. . .

...
unv1 unv2 ... unvn

3

7775
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Linear algebra

Matrix A 2 Rm⇥n

A =

2

64
A1,1 ... A1,n
...

. . .
...

Am,1 ... Am,n

3

75

Some concepts to recall

I square matrix

I transpose of a matrix

I symmetric matrix
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Linear algebra

Null (A) = {x 2 Rn : Ax = 0}

Range (A) = {y 2 Rn : Ax = y for some x}

Rank (A) = dimension of span of columns/rows of A
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Linear algebra

If A is n ⇥ n, Rank (A) = n i↵

I det (A) = 0

I Null (A) = {0}
I Range (A) = Rn
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Linear algebra

For a matrix A 2 Rn⇥n, an eigenvalue � and eigenvector v are those that satisfy

Av = �v .
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Linear algebra

For a symmetric matrix A,

I All eigenvalues are real.

I All eigenvectors are perpendicular to each other.

If A is nonsingular, none of its eigenvalues are zero.
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Linear algebra

For a symmetric matrix A, eigen or spectral decomposition

A =
nX

i=1

�iviv
>
i ,

or
A = Q⇤Q> ,

using matrix forms.
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Linear algebra

Postive definite matrix

I A symmetric matrix A is called positive semidefinite, if all eigenvalues are greater
than or equal to 0.

I Or
x>Ax � 0 , 8x 2 Rn

I AA> and A>A are always psd.
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Calculus

I Continuity

I Lipschitz continuity

I Derivative

I Gradient

I Hessian

I Quadratic function
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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