CSED490Y: Optimization for Machine Learning Week 02-1: Basics

Namhoon Lee
POSTECH

Spring 2022

Linear algebra

- V column vectors, row vectors

Linear algebra
p-norm of vector $x \in \mathbb{R}^{n}$ where $1 \leq p \leq \infty$:

$$
\begin{array}{ll}
p=1 & \|x\|_{1}:=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
\underset{\sim}{p=2} & \|x\|_{2}:=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+} \\
& \|x\|_{\infty}:=\max _{i=\left\{l_{1} \cdots i n\right\}}\left|x_{i}\right| \\
&
\end{array}
$$

$$
\|u\|_{1}=7
$$

$$
\|u\|_{2}=5
$$

$$
\|u\|_{\infty}=4
$$

Linear algebra

Subspace

* The subset $\mathcal{S} \subset \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if the following property holds: If \underline{x} and \underline{y} are any two elements of \mathcal{S}, then

$$
\alpha x+\beta y \in \mathcal{S}, \quad \forall \underline{\alpha}, \underline{\beta} \in \mathbb{R} .
$$

(i.e., set closed under addition and scaling)

Linear algebra

Span
$\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a spanning set for $\underline{\mathcal{S}}$ if any vector $s \in \mathcal{S}$ can be written as

$$
s=\alpha_{1}\left(S_{1}+\alpha_{2}(2)+\ldots+\alpha_{k} \beta_{k},\right.
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$.

Linear algebra

Linear independence

$$
\alpha_{i} x_{i}=-\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{E}\right)
$$

* A set of vectors $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}^{n}$ is called linearly independent if there are no $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\sim^{\sim} \alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{k} x_{k}=0, \quad \alpha u+\beta \downarrow=\omega \in R^{2}
$$

except $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$.

$$
\left\{\underline{\left.\alpha_{1} u+v, w\right\} \operatorname{span} \mathbb{R}_{2} v+\underline{\alpha}_{3} w=0 \Leftrightarrow \underset{m}{w}=-\frac{1}{\alpha_{3}}\left(\alpha_{1} u+\alpha_{2} v\right)}\right.
$$

Linear algebra

Linear independence
A set of vectors $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{n}$ is called linearly independent if there are no $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{k} x_{k}=0
$$

except $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$.
(i.e., $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent if none of them can be written as a linear combination of $\overline{\text { the }}$ others.)

Linear algebra

$$
\{\underline{a}, v, x\} \operatorname{spnan} \mathbb{R}^{2}
$$

Basis

$$
\{u, v\}
$$

If $\left\{x_{1}, \ldots, \chi_{\chi 6}\right\}$ are linearly independent \& span \mathcal{X}, we call them a basis of \mathcal{X}

- k (the number of elements in the basis) is referred to as the dimension of \mathcal{X}, and denoted by $\operatorname{dim}(\mathcal{X})$.
- There are many ways to choose a basis of \mathcal{X} in general, but that all bases contain the same nubmer of vectors.

Linear algebra

$$
u, v \in \mathbb{R}^{\eta} \quad\left[-u^{\top}-\right]\left[\begin{array}{l}
1 \\
v \\
1
\end{array}\right]
$$

$$
\underset{-}{u \cdot v}=\langle u, v\rangle=\underline{u}^{\top} \underline{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

Linear algebra

Angle between u and v

$$
\sim_{n}^{\cos \theta_{1}, \sigma} \frac{\langle u, v\rangle}{\|u\|_{2}\|v\|_{2}}
$$

- If they are perpendicular, $\langle\underline{u, v\rangle}=0$.

$$
\|a+b\|_{p} \leq\|a\|_{p}+\|b\|_{p}
$$

$$
\begin{gathered}
u=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\langle u, v\rangle=0
\end{gathered}
$$

Linear algebra

$$
\begin{aligned}
& \cos \theta=\frac{\langle u, v\rangle}{\left\|u l_{2}\right\| \sqrt{ } \|_{2}}=\frac{b}{a}=\|v\|_{2} \\
& \text { Projection of } \underset{\underline{v}}{ } \text { onto } \underline{u} \\
& \xrightarrow[b]{\text { LO }} \\
& \checkmark \quad \sqrt{\checkmark}=\left.\frac{\langle v, u\rangle}{\|u\|_{2}^{2}}\right|^{v}\left(\frac{u}{\|u\|_{2}}\right) \quad b=\frac{\langle u, v\rangle}{\|u\|_{2}}
\end{aligned}
$$

Linear algebra

Cauchy-Schwarz inequality

- Two sides are equal iff u and v are linearly dependent.

Linear algebra

Triangle inequality

$$
\|u+v\|_{2} \leq\|u\|_{2}+\|v\|_{2}
$$

Linear algebra

Outer product

$$
\left.\begin{array}{l}
u, v \in \mathbb{R}^{\eta} \eta \\
u \otimes v=\underline{u v^{\top}}=\left[\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \ldots & u_{1} v_{n} \\
u_{2} v_{1} & u_{2} v_{2} & \ldots & u_{2} v_{n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n} v_{1} & u_{n} v_{2} & \ldots & u_{n} v_{n}
\end{array}\right]
\end{array}\right) \eta \eta u^{\top}
$$

Linear algebra

Matrix $A \in \mathbb{R}^{m \times n}$

$$
\left.A=\left[\begin{array}{ccc}
A_{1,1} & \ldots & A_{1, n} \\
\vdots & \ddots & \vdots \\
A_{m, 1} & \ldots & A_{m, n}
\end{array}\right]\right) m
$$

Some concepts to recall

- square matrix $\rightarrow m=n$
- transpose of a matrix $\rightarrow A^{\top} \rightarrow$ nam matrix where $\left(A^{\top}\right)_{i j}=A_{j i}$
- symmetric matrix

$$
\rightarrow A_{i j}=A_{j i}
$$

Linear algebra

$\checkmark \operatorname{Null}(A)=\left\{\underset{\sim}{x} \in \mathbb{R}^{n}: A x=0\right\}$
\checkmark Range $(A)=\left\{\underset{\sim}{y} \in \mathbb{R}^{n}: \underline{A x=y}\right.$ for some $\left.x\right\} \in \mathbb{R}^{n}$

\checkmark Rank $(A)=$ dimension of span of columns/rows of A

Linear algebra

If A is $n \times n, \operatorname{Rank}(A)=n$ iff

Linear algebra

* For a matrix $A \in \mathbb{R}^{n \times n}$, an eigenvalue $\underline{\lambda}$ and eigenvector \underline{v} are those that satisfy

$$
A v=\lambda v \text {. }
$$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad \sim=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \lambda=2
$$

Linear algebra

For a symmetric matrix A,

- All eigenvalues are real.
- All eigenvectors are perpendicular to each other.

If A is nonsingular, none of its eigenvalues are zero.
$\longrightarrow \operatorname{dec} A=0$
Slugular

Linear algebra

For a symmetric matrix A, eigen or spectral decomposition

$$
\begin{aligned}
& (A)=\sum_{i=1}^{n} \lambda_{i}\left(v_{i} v_{i}^{\top}\right), r \in \mathbb{R}^{1} \\
& A=Q\left(\mathbb{Q} Q^{\top}, \quad Q=\left[\begin{array}{ccc}
1 & & i \\
v_{1} & \cdots & v_{n} \\
1 & & 1
\end{array}\right]\right.
\end{aligned}
$$

or
using matrix forms.

$$
\begin{aligned}
\lambda & =\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) \\
& =\left[\begin{array}{lll}
\lambda_{1} & - \\
1 & \lambda_{2} & - \\
1 & \ddots & \bar{\lambda}_{n}
\end{array}\right]
\end{aligned}
$$

Linear algebra

Semis
 Postive definite matrix

$$
\lambda_{i} \underset{x^{*}}{ } 0
$$

- A symmetric matrix A is called positive sénidefinite, if all eigenvalues are greater than or equal to 0 .
- Or

$$
v x^{x} A \otimes_{3} 0, \quad \forall x \in \mathbb{R}^{n}
$$

- $A A^{\top}$ and $A^{\top} A$ are always bsd. $x \neq \sigma$

Calculus

Thank you

Any questions?

Credits

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

