
CSED490Y: Optimization for Machine Learning

Week 02-2: Basics

Namhoon Lee

POSTECH

Spring 2022

1 / 25

 



Machine learning

Machine learning?

I Machine learning gives computers the ability to learn without being explicitly
programmed.
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Learning to calculate

I How it works: An integrated circuit composed
of transistors converts input numbers to binary
strings, and performs a desired calculation by
turning on and o↵ transistors with electricity.

I Idea: Can we learn the ability to calculate? (by
Hyung Jin Kim)
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Learning to calculate

I For a CS approach, we assume that the logic of the
operation to perform is known a priori, and therefore, it
can be programmed.
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Learning to calculate

I For an ML approach, we assume that we aren’t given
what is in the box, and therefore, it has to be figured
out (from data).
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Learning to calculate
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Learning to calculate

If you define “?”
! CS ?

If a machine finds “?” from data
! ML

Motivated by this idea ML is often considered as AI.
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Machine learning

Machine learning?

I Machine learning gives computers the ability to learn without being explicitly
programmed.

I Using computer to automatically detect patterns in data and use these to make
predictions or decisions.
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Face recognition

An automated face detection method developed at Carnegie Mellon University enables
computers to recognize faces in images at a variety of scales, including tiny faces
composed of just a handful of pixels (Byron Spice).

Finding tiny faces (Hu and Ramanan 2017)
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Machine learning

Machine learning?

I Machine learning gives computers the ability to learn without being explicitly
programmed.

I Using computer to automatically detect patterns in data and use these to make
predictions or decisions.

Tom Mitchell: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at tasks in T , as
measured by P, improves with experience E .”
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Examples of machine learning tasks

I Spam filtering

I Weather forecasting

I Movie recommendation on Netflix

I Recognising faces from photos

I Translating English to Korean

I Discoverying new drugs

I Playing games

Annual average temperature in South Korea
from 1973 to 2020 (Statista 2021)
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Relationship between numerical variables

We want to discover relationship between numerical variables.

I Does number of lung cancer deaths change
with number of cigarettes?

I Does number violent crimes change with
violent video games?

I Do people in big cities walk faster?

“Correlation does not imply causation”.

I (OK) “Higher velocity is correlated with higher population”

I (BAD) “Higher population leads to higher velocity”
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Scenario

Suppose a student is planning to take a machine learning course next semester and
wondering how much time to study to receive good scores or grade. How do we
address this problem?

I An ML approach: collect data, train a prediction model, estimate scores.
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Collect data

Student ID Time (hours) Scores

1 5.3 70
2 2.3 62
3 11.8 88
4 4.9 67
5 15.1 93
.. .. ..

Collecting students exam scores.
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Collect data
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Plotting students exam scores.
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Learning hypothesis function

How are we going to use such data?

A typical ML system

I Learn a prediction function h which, given an input x , produces an output h(x).

I For example, x is number of study hours, and h(x) would be an estimate of scores.

I But what hypothesis class h are we going to use?

16 / 25



Learning hypothesis function

How are we going to use such data?












































































































Tupac ML system output

K h y
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Linear hypothesis

Hypothesis of linear regression:

h✓(x) = ✓0 + ✓1x

I Linear regression is a machine learning model to solve a regression problem using
a linear hypothesis.

I Here, ✓ = [✓0, ✓1]> is a vector of parameters of the prediction function.

I Why do we use such model?
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Fitting linear hypothesis
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Fitting linear hypothesis

I What does this mean?
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Many choices
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Fitting many linear hypotheses

I Which one is better?
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Measuring errors
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Measuring errors

I In order to evaluate how well a hypothesis fits data, we need to measure some
erorrs as to how much it deviates from the true value.
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Least squares

One standard measure we can use is the squared error:

L✓ =
nX

i

(h✓(xi )� yi )
2 .

I We call it linear least squares.

I One can draw a probabilistic interpretation for this choice under some assumption.
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Finding best hypothesis
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Finding model parameters

I Find right values for the model parameters ✓ that give the minimum error.
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Minimizing cost function

Find ones that minimize our cost function:

✓? = argmin
✓


L✓ :=

nX

i

(h✓(xi )� yi )
2

�

which is an optimization problem.
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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