CSED490Y: Optimization for Machine Learning

Week 03-1: Convex optimization

Namhoon Lee
POSTECH
Spring 2022

Admin

The course registration period is now over.
For anyone who missed the previous lectures including newly registered:

- Please make sure you understand the course logistics; read "s01-1.pdf" carefully.
- We have covered the basic materials in the last few weeks. opt. math, ml

Admin

The course registration period is now over.
For anyone who missed the previous lectures including newly regiştered:

- Please make sure you understand the course logistics; read "s01-1.pdf" carefully.
- We have covered the basic materials in the last few weeks.

A few updates:

- We will switch back to offline classes from Week08 (Monday 11 April).
- The midterm exam will be taken on Week10 (Monday 25 April).
swap w8 and alo

Admin

Start working on the project!

Team up (² Due: 11:59PM on Monday 14 March):

- Form a group of up to 3 members.
- Email TA ${ }^{\top}$ about your group members by the due date.
- You may use the ${ }^{\text {discussion board on PLMS to find your teammates. }}$

Admin

Start working on the project!

Team up (Due: 11:59PM on Monday 14 March):

- Form a group of up to 3 members.
- Email TA about your group members by the due date.
- You may use the discussion board on PLMS to find your teammates.

What topics to work on?
" Empirical study of any optimization and/for machine learning method."

- Examples and references: ${ }^{2}$ EPFL CS439, POSTECH ČSED499, etc.
- ${ }^{\text {A Avoid }}$ self-plagiarism: you are not allowed to reuse work that you have already done (e.g., previous research work, project, etc.).

Admin

Example topics (from PFL CS439):

- Local minima for deep learning: Can you fund differences between the 'shape' of local minima that SGD finds, depending on different step-sizes or mini-batch size, vs e.g. AdaGrad or full gradient descent?

MC

- Same thing for GANs? Or for matrix factorizations?
- Along a training trajectory for a deep net, does the behaviour of each step resemble the convex case, is it different early or late in training?
- How do different optimization variants affect generalization (test error)?
- Second-order methods: Do (Quasi-)Newton methods go to differently shaped local minima in nelural networks? Or: Is the secant method a viable alternative training method?
- ...

W8

Admin

Example topics (from POSTECH CSED499; 2021-1, 2021-2):

- Prior robust training on crowdsourcing with neural enhanced belief propagation
- CF-Layer: Boosting performance in noisy federated learning
- Achieving adversarial robustness via network pruning
- Hyperparameter optimization by unsupervised learning
- ...

Admin

Important:

- Make sure to check important dates for project.
- This course does not require any assignments other than project.
- If there is anything you are not sure of about the project, come talk to me.

Convex optimization

Consider an optimization problem:
which reads as "minimize a function f subject to x being in the set \mathbb{C} ".

Convex optimization

Consider an optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

which reads as "minimize a function f subject to x being in the set \mathbb{C} ".
We call the above a convex optimization problem if:

- The set \mathbb{C} is a convex set.
- The function f is a convex function.

Convex optimization

Consider an optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

which reads as "minimize a function f subject to x being in the set \mathbb{C} ".
We call the above a convex optimization problem if:

- The set \mathbb{C} is a convex set.
- The function f is a convex function.
\circledast Key property: "All(local)minima are (global)minima."

Convex set

$x_{1} x_{2}$

A set \mathbb{C} is convex if the line segment between any two points in \mathbb{C} also lies in \mathbb{C}.

Convex set
Line segment between x_{1} and x_{2} : all points

$$
x=\underline{\theta} x_{1}+\underline{(1-\theta)} x_{2}
$$

with $0 \leq \theta \leq 1$.

$$
\begin{aligned}
\theta & =0 \rightarrow x=x_{2} \\
\theta & =1 \rightarrow x=x_{1} \\
0 \leq \theta & \leq 1
\end{aligned}
$$

Convex set

Line segment between x_{1} and x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2}
$$

with $0 \leq \theta \leq 1$.
Convex set: a set \mathbb{C} is convex if, for any $x_{1}, x_{2} \in \mathbb{C}$ and any $0 \leq \theta \leq 1$, it contains the line segment between x_{1} and x_{2} in \mathbb{C}

$$
* \theta x_{1}+(1-\theta) x_{2} \in \mathbb{C} .
$$

C

$N C$

NC

Convex set

Convex combination of $\widetilde{\underline{x}_{1}, \ldots, \underline{x}_{\underline{k}}}$: any point x of the form

$$
(x)=\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}
$$

with $\underline{\theta_{1}}+\underline{\theta_{2}}+\ldots+\underline{\theta_{k}}=1$ and $\underline{\theta_{i}} \geq 0$.

$$
\sum_{i} \theta_{i}=1
$$

Convex set

Convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}
$$

with $\theta_{1}+\theta_{2}+\ldots+\theta_{k}=1$ and $\theta_{i} \geq 0$.
Convex hull of a set \mathbb{C} : set of all convex combinations of points in \mathbb{S}

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{i} \in \mathbb{C}, \theta_{1}+\ldots+\theta_{k}=1, \theta_{i} \geq 0\right\}
$$

Convex set

Cone: if for every $\underline{x} \in \mathbb{C}$ and $\underline{\theta} \geq 0$ we have

$$
\underline{\underline{\theta x}} \in \mathbb{\mathbb { C }} .
$$

Convex set

Cone: if for every $x \in \mathbb{C}$ and $\theta \geq 0$ we have

$$
\theta x \in \mathbb{C}
$$

Conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\left.\theta_{1} \geq 0, \theta_{2} \geq 0 . \quad \sum_{i} \theta_{i}=1\right)$

cone

Convex set

Convex cone: a set \mathbb{C} is a convex cone if it is convex and a cone; for any $x_{1}, x_{2} \in \mathbb{C}$ and $\theta_{1}, \theta_{2} \geq 0$, we have

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2} \mathbb{C} .
$$

Convex set

Conic hull of a set \mathbb{C} : the set of all conic combinations of points in \mathbb{C}

$$
\begin{aligned}
& \left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{i} \in \mathbb{C}, \theta_{i} \geq 0\right\} \\
& \quad\left(\sum_{i} \theta_{i}=1\right)
\end{aligned}
$$

Convex set

Hyperplane:

$$
\mathbb{H}=\left\{x \in \mathbb{R}^{n}: \underline{a^{\top} x=b}\right\}
$$

where $a \neq 0$ and $b \in \mathbb{R}$.
$n=2 \quad$ line.

Convex set

Hyperplane:

$$
\mathbb{H}=\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\}
$$

where $a \neq 0$ and $b \in \mathbb{R}$.

Convex set

Hyperplane:

$$
\mathbb{H}=\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\}
$$

where $a \neq 0$ and $b \in \mathbb{R}$.

- Notice the set of points on the line is a convex set.
- You can also prove hyperplanes are convex.

Convex set
Half space:

$$
a^{\top} x=b<H
$$

$$
\underline{\mathbb{H}^{+}}=\left\{\underline{x} \in \mathbb{R}^{n}: \underline{a^{\top} x \geq b}\right\} \quad \text { or } \quad \underline{\mathbb{H}^{-}}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq b\right\}
$$

Convex set

Half space:

$$
\mathbb{H}^{+}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \geq b\right\} \quad \text { or } \quad \mathbb{H}^{-}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq b\right\}
$$

- You can draw a convex set with half spaces; for a nonconvex set you can't.

Convex set

Norm ball with center x_{c} and radius r :

Convex set

Norm ball with center x_{c} and radius r :

$$
\begin{aligned}
&\left\{x:\left\|x-x_{c}\right\|_{p} \leq r\right\} \\
& x_{1}, x_{2} \in S
\end{aligned}
$$

$$
\text { show } \theta x_{1}+(1-\theta) x_{2} \notin S
$$

- Prove Euclidean balls are convex:

$$
v \quad\left\|x_{1}+x_{2}\right\| \leqslant\left\|x_{1}+x_{2}\right\|
$$

Convex set

Norm cone:

$$
\{(x, t):\|x\| \mathcal{p} \leq t\}
$$

$x \in \mathbb{R}^{2}$ ヒ

Convex set

Polyhedron: the solution set of a finite number of linear equalities and inequalities

~~~
\[
\mathbb{P}=\left\{\otimes: a_{i}^{a_{i}^{\top} x \leq b_{i}} i=1, \ldots, m, c_{j}^{\top} x=d_{j}, j=1, \ldots, p\right\} .
\]

\section*{Wol-2 \\ opt. \\ Transportanims}


A polyhedron is the intersection of a finite number of halfspaces and hyperplanes.

\section*{Convex set}

Intersections of convex sets are convex.
Let \(C_{i}, i \in \mathbb{I}\) be convex sets, where \(\mathbb{I}\) is a index set. Then \(C=\cap_{i \in \mathbb{I}} C_{i}\) is a convex set.


\section*{Convex set}

Intersections of convex sets are convex.
Let \(C_{i}, i \in \mathbb{I}\) be convex sets, where \(\mathbb{I}\) is a index set. Then \(C=\cap_{i \in \mathbb{I}} C_{i}\) is a convex set. obj: linew
- Each constraint \(a_{i}^{\top} x \leq b_{i}\) defines a half-space.
- Half-spaces are convex sets.
- So the set of \(x\) satisfying \(A x \leq b\) is the intersection of convex sets.

\section*{Convex set}

Separating hyperplane theorem
If \(C\) and \(D\) are nonempty disjoint convex sets, there exist \(a \neq 0, b\) such that \(a^{\top} x \leq b\) for \(x \in C\) and \(a^{\top} x \geq b\) for \(x \in D\).


\section*{Convex set}

Supporting hyperplane theorem
If \(C\) is convex, then there exist a supporting hyperplane at every boundary point of \(C\).


\section*{Thank you}

Any questions?

\section*{Credits}

A lot of material in this course is borrowed or derived from the following:
- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.~~~

