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Admin

The course registration period is now over.

For anyone who missed the previous lectures including newly registered:

I Please make sure you understand the course logistics; read “s01-1.pdf” carefully.

I We have covered the basic materials in the last few weeks.

A few updates:

I We will switch back to o✏ine classes from Week08 (Monday 11 April).

I The midterm exam will be taken on Week10 (Monday 25 April).
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Admin

Start working on the project!

Team up (Due: 11:59PM on Monday 14 March):

I Form a group of up to 3 members.

I Email TA about your group members by the due date.

I You may use the discussion board on PLMS to find your teammates.

What topics to work on?

I Empirical study of any optimization and/for machine learning method.

I Examples and references: EPFL CS439, POSTECH CSED499, etc.

I Avoid self-plagiarism: you are not allowed to reuse work that you have already
done (e.g., previous research work, project, etc.).
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Admin

Example topics (from EPFL CS439):

I Local minima for deep learning: Can you find di↵erences between the ‘shape’ of
local minima that SGD finds, depending on di↵erent step-sizes or mini-batch size,
vs e.g. AdaGrad or full gradient descent?

I Same thing for GANs? Or for matrix factorizations?

I Along a training trajectory for a deep net, does the behaviour of each step
resemble the convex case, is it di↵erent early or late in training?

I How do di↵erent optimization variants a↵ect generalization (test error)?

I Second-order methods: Do (Quasi-)Newton methods go to di↵erently shaped
local minima in neural networks? Or: Is the secant method a viable alternative
training method?

I ...
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Admin

Example topics (from POSTECH CSED499; 2021-1, 2021-2):

I Prior robust training on crowdsourcing with neural enhanced belief propagation

I CF-Layer: Boosting performance in noisy federated learning

I Achieving adversarial robustness via network pruning

I Hyperparameter optimization by unsupervised learning

I ...
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https://www.youtube.com/playlist?list=PLcXF62ACP89MaMohuy_VdUewTesVu0yD4
https://www.youtube.com/playlist?list=PLcXF62ACP89PHObfYY6U0fmBTS8mOHOTv


Admin

Important:

I Make sure to check important dates for project.

I This course does not require any assignments other than project.

I If there is anything you are not sure of about the project, come talk to me.
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Convex optimization

Consider an optimization problem:

min
x2C

f (x)

which reads as “minimize a function f subject to x being in the set C”.

We call the above a convex optimization problem if:

I The set C is a convex set.

I The function f is a convex function.

Key property: All local minima are global minima.

7 / 23

mm

I go
i

s e
I



Convex optimization

Consider an optimization problem:

min
x2C

f (x)

which reads as “minimize a function f subject to x being in the set C”.

We call the above a convex optimization problem if:

I The set C is a convex set.

I The function f is a convex function.

Key property: All local minima are global minima.

7 / 23



Convex optimization

Consider an optimization problem:

min
x2C

f (x)

which reads as “minimize a function f subject to x being in the set C”.

We call the above a convex optimization problem if:

I The set C is a convex set.

I The function f is a convex function.

Key property: All local minima are global minima.

7 / 23



Convex set

A set C is convex if the line segment between any two points in C also lies in C.
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Convex set

Line segment between x1 and x2: all points

✓x1 + (1� ✓)x2

with 0  ✓  1.

Convex set: a set C is convex if, for any x1, x2 2 C and any 0  ✓  1, it contains the
line segment between x1 and x2 in C

✓x1 + (1� ✓)x2 2 C .
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Convex set

Convex combination of x1, ..., xk : any point x of the form

x = ✓1x1 + ✓2x2 + ...+ ✓kxk

with ✓1 + ✓2 + ...+ ✓k = 1 and ✓i � 0.

Convex hull of a set C: set of all convex combinations of points in S

{✓1x1 + ...+ ✓kxk | xi 2 C, ✓1 + ...+ ✓k = 1, ✓i � 0} .
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Convex set

Cone: if for every x 2 C and ✓ � 0 we have

✓x 2 C .

Conic (nonnegative) combination of x1 and x2: any point of the form

x = ✓1x1 + ✓2x2

with ✓1 � 0, ✓2 � 0.
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Convex set

Convex cone: a set C is a convex cone if it is convex and a cone; for any x1, x2 2 C

and ✓1, ✓2 � 0, we have
✓1x1 + ✓2x2 2 C .
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Convex set

Conic hull of a set C: the set of all conic combinations of points in C

{✓1x1 + ...+ ✓kxk | xi 2 C, ✓i � 0} .
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Convex set

Hyperplane:
H = {x 2 R

n : a>x = b}

where a 6= 0 and b 2 R.

I Notice the set of points on the line is a convex set.

I You can also prove hyperplanes are convex.
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Convex set

Half space:

H
+ = {x 2 R

n : a>x � b} or H
� = {x 2 R

n : a>x  b} .

I You can draw a convex set with half spaces; for a nonconvex set you can’t.
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Convex set

Norm ball with center xc and radius r :

{x : kx � xckp  r} .

I Prove Euclidean balls are convex:
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Convex set

Norm cone:
{(x , t) : kxkp  t}
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Convex set

Polyhedron: the solution set of a finite number of linear equalities and inequalities

P = {x : a>i x  bi , i = 1, ...,m, c>j x = dj , j = 1, ..., p} .

A polyhedron is the intersection of a finite number of halfspaces and hyperplanes.
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Convex set

Intersections of convex sets are convex.

Let Ci , i 2 I be convex sets, where I is a index set. Then C = \i2ICi is a convex set.

Example: linear program with linear inequalities constraints Ax  b.

I Each constraint a>i x  bi defines a half-space.

I Half-spaces are convex sets.

I So the set of x satisfying Ax  b is the intersection of convex sets.
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Convex set

Separating hyperplane theorem

If C and D are nonempty disjoint convex sets, there exist a 6= 0, b such that a>x  b
for x 2 C and a>x � b for x 2 D.
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Convex set

Supporting hyperplane theorem

If C is convex, then there exist a supporting hyperplane at every boundary point of C .
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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