CSED490Y: Optimization for Machine Learning Week 03-1: Convex optimization

Namhoon Lee

POSTECH

Spring 2022

The course registration period is now over.

For anyone who missed the previous lectures including newly registered:

Please make sure you understand the course logistics; read "s01-1.pdf" carefully.

1

> We have covered the basic materials in the last few weeks. moth, met

The course registration period is now over.

For anyone who missed the previous lectures including newly registered:

- Please make sure you understand the course logistics; read "s01-1.pdf" carefully.
- ▶ We have covered the basic materials in the last few weeks.

A few updates:

▶ We will switch back to offline classes from Week08 (Monday 11 April).

► The midterm exam will be taken on Week10 (Monday 25 April).

Swap WS and WIO

Admin

Start working on the project!

Team up (Due: 11:59PM on Monday 14 March):

- Form a group of up to 3 members.
- Email TA about your group members by the due date.
- > You may use the discussion board on PLMS to find your teammates.

Admin

Start working on the project!

Team up (Due: 11:59PM on Monday 14 March):

- Form a group of up to 3 members.
- Email TA about your group members by the due date.
- You may use the discussion board on PLMS to find your teammates.

What topics to work on?

- Empirical study of *any* optimization and/for machine learning method."
- Examples and references: EPFL CS439, POSTECH CSED499, etc.
- Avoid self-plagiarism: you are not allowed to reuse work that you have already done (*e.g.*, previous research work, project, etc.).

Admin

Example topics (from PFL CS439):

Local minima for deep learning: Can you find differences between the 'shape' of local minima that SGD finds, depending on different step-sizes or mini-batch size, vs e.g. AdaGrad or full gradient descent?

W4

Same thing for <u>GANs</u>? Or for matrix factorizations?

- Along a training trajectory for a deep net, does the behaviour of each step resemble the convex case, is it different early or late in training?
- How do different optimization variants affect generalization (test error)?
- Second-order methods: Do (Quasi-)Newton methods go to differently shaped local minima in neural networks? Or: Is the <u>secant method</u> a viable alternative training method?

...

Example topics (from POSTECH CSED499; 2021-1, 2021-2):

- Prior robust training on crowdsourcing with neural enhanced belief propagation
- CF-Layer: Boosting performance in noisy federated learning
- Achieving adversarial robustness via network pruning
- Hyperparameter optimization by unsupervised learning

Important:

- Make sure to check important dates for project.
- This course does not require any assignments other than project.
- If there is anything you are not sure of about the project, come talk to me.

Consider an optimization problem:

which reads as "minimize a function f subject to x being in the set \mathbb{C} ".

s.t.—

 $\lim_{x \in \mathbb{C}} f(x)$

error, risk, cost, lost / XER Consider an optimization problem:

$$\min_{x\in\underline{\mathbb{C}}} \underline{f}(x)$$

which reads as "minimize a function f subject to x being in the set \mathbb{C} ".

We call the above a *convex* optimization problem if:

- The set \mathbb{C} is a convex set.
- ► The function *f* is a convex function.

Consider an optimization problem:

 $\min_{x\in\mathbb{C}} f(x)$

which reads as "minimize a function f subject to x being in the set \mathbb{C} ".

We call the above a *convex* optimization problem if:

- The set \mathbb{C} is a convex set.
- ► The function *f* is a convex function.

Get Key property: "All(local)minima are (global)minima." /

A set \mathbb{C} is convex if the line segment between any two points in \mathbb{C} also lies in \mathbb{C} .

Line segment between x_1 and x_2 : all points

$$\chi = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$.

Convex set: a set \mathbb{C} is convex if, for any $x_1, x_2 \in \mathbb{C}$ and any $0 \le \theta \le 1$, it contains the line segment between x_1 and x_2 in \mathbb{C}

Convex combination of $\underbrace{x_1, ..., x_k}$: any point x of the form $\underbrace{(x) = \theta_1 x_1 + \theta_2 x_2 + ... + \theta_k x_k}_{i}$ with $\underline{\theta_1} + \underline{\theta_2} + ... + \underline{\theta_k} = 1$ and $\underline{\theta_i} \ge 0$. $\underbrace{\Sigma}_i \mathbf{0}_i = i$

Convex combination of $x_1, ..., x_k$: any point x of the form $x = \theta_1 x_1 + \theta_2 x_2 + ... + \theta_k x_k$ with $\theta_1 + \theta_2 + ... + \theta_k = 1$ and $\theta_i \ge 0$.

Convex hull of a set \mathbb{C} : set of all convex combinations of points in \mathbb{S}

$$\{\frac{\theta_1 x_1 + \ldots + \theta_k x_k}{k} \mid x_i \in \mathbb{C}, \ \theta_1 + \ldots + \theta_k = 1, \ \theta_i \ge 0\}.$$

Cone: if for every $\underline{x} \in \mathbb{C}$ and $\underline{\theta} \ge 0$ we have

$$\theta x \in \mathbb{C}$$
.

Cone: if for every $x \in \mathbb{C}$ and $\theta \ge 0$ we have

$$\theta x \in \mathbb{C}$$
.

Conic (nonnegative) combination of x_1 and x_2 : any point of the form

with
$$\underline{\theta_1 \ge 0}, \underline{\theta_2 \ge 0}. \left(\underbrace{\boldsymbol{\xi}}_{r} \boldsymbol{\theta}_{r} \le \boldsymbol{\ell} \right)$$
 (one

Convex cone: a set \mathbb{C} is a convex cone if it is convex and a cone; for any $x_1, x_2 \in \mathbb{C}$ and $\theta_1, \theta_2 \ge 0$, we have

Conic hull of a set \mathbb{C} : the set of all conic combinations of points in \mathbb{C}

Hyperplane:

$$\mathbb{H} = \{ x \in \mathbb{R}^n : \underline{a^\top x = b} \}$$

where $a \neq 0$ and $b \in \mathbb{R}$.

Hyperplane:

$$\mathbb{H} = \{ x \in \mathbb{R}^n : a^\top x = b \}$$

where $a \neq 0$ and $b \in \mathbb{R}$.

Hyperplane:

$$\mathbb{H} = \{x \in \mathbb{R}^{n} : a^{\top}x = b\}$$
where $a \neq 0$ and $b \in \mathbb{R}$.

$$\begin{array}{c}
x_{1,}x_{2} \in H\\
x_{0}\\
x$$

► You can also prove hyperplanes are convex.

 $a_{x=b}^{T}$ Half space: $\mathbb{H}^+ = \{ x \in \mathbb{R}^n : a^\top x \ge b \} \quad \text{or} \quad \mathbb{H}^- = \{ x \in \mathbb{R}^n : a^\top x \le b \} .$ $-\frac{\alpha^{T}(x-x_{0})}{1}=0$ $a^T x \ge b$ $a^{T}(x-x_{0}) \leq 0$ $a^T x \leq b$

Half space:

$$\mathbb{H}^+ = \{ x \in \mathbb{R}^n : a^\top x \ge b \} \quad \text{or} \quad \mathbb{H}^- = \{ x \in \mathbb{R}^n : a^\top x \le b \} \; .$$

You can draw a convex set with half spaces; for a nonconvex set you can't.

Norm ball with center x_c and radius r:

$$\{x : \|x - x_{c}\|_{p} \leq r \} .$$

$$\begin{array}{c} x_{1}, x_{2} \in S \\ \text{show} \quad \boxed{\partial x_{1} + (r \circ) x_{2}} \in S \\ \hline{\partial x_{1} + (r \circ) x_{2} \in S \\ \hline{\partial x_{1} + (r \circ) x_{2}} \in S \\ \hline{\partial x_{1} + (r \circ) x_{2}$$

Norm cone: $\{(x,t): \|x\|_{\mathcal{P}} \leq t\}$ x€R² € t0 1 0 0 $-1^{\sim}-1$ x_2

A polyhedron is the intersection of a finite number of halfspaces and hyperplanes.

Intersections of convex sets are convex.

Let $C_i, i \in \mathbb{I}$ be convex sets, where \mathbb{I} is a index set. Then $C = \bigcap_{i \in \mathbb{I}} C_i$ is a convex set.

Intersections of convex sets are convex.

Let $C_i, i \in \mathbb{I}$ be convex sets, where \mathbb{I} is a index set. Then $C = \bigcap_{i \in \mathbb{I}} C_i$ is a convex set.

Example: linear program with linear inequalities constraints $Ax \leq b$.

- Each constraint $a_i^\top x \leq b_i$ defines a half-space.
- Half-spaces are convex sets.
- So the set of x satisfying $Ax \le b$ is the intersection of convex sets.

Separating hyperplane theorem

If C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ such that $a^{\top}x \leq b$ for $x \in C$ and $a^{\top}x \geq b$ for $x \in D$.

Supporting hyperplane theorem

If C is convex, then there exist a supporting hyperplane at every boundary point of C.

Any questions?

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.