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Convex function

Convex function?

I A C 0
function is convex if and only if the function is below its chord between any

two points.

I A C 1
function is convex if and only if the function is above its tangent planes at

any point.

I A C 2
function is convex if and only if it is curved upwards everywhere.
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Convex function

C 0
definition of convex functions

f (✓x1 + (1� ✓)x2)  ✓f (x1) + (1� ✓)f (x2) , 8x1, x2 2 Rn
and 0  ✓  1 .
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Convex function

C 1
definition of convex functions

f (y) � f (x) + hrf (x), y � xi , 8x , y 2 Rn .
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Convex function

C 1
definition of convex functions
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Convex function

C 2
definition of convex functions

r2f (x) ⌫ 0 , 8x 2 Rn .
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Convex function

C 2
definition of convex functions

r2f (x) ⌫ 0 , 8x 2 Rn .
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Convex function

Show that the C 2
definition is equivalent to the C 1

deifnition.

First, let’s recall the fundamental theorem of calculus:

Z 1

0
F 0
(t)dt = F (1)� F (0)

Now consider the following:

Z 1

0
(x � y)>r2f (tx + (1� t)y)dt =

Z 1

0

d

dt

⇣
rf (tx + (1� t)y)

⌘
dt = rf (x)�rf (y)
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Convex function

Multiplying by x � y both sides gives

Z 1

0
(x � y)>r2f (tx + (1� t)y)(x � y)dt = hrf (x)�rf (y), x � yi

By applying C 2
definition, we obtain

hrf (x)�rf (y), x � yi � 0

I It’s called function is monotone; i.e., C 2
function is monotone.

I You can also show that C 1
function is monotone.
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Convex function

Next, consider the following:

Z 1

0
rf ((y � x)t + x)>(y � x)dt

=

Z 1

0

d

dt

⇣
f ((y � x)t + x)

⌘
dt = f (y)� f (x)

Rearranging it gives

f (y) = f (x) +

Z 1

0
rf ((y � x)t + x)>(y � x)dt

We want to relate this to the C 1
definition, while using monotonicity.
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Convex function

From the monotonicity, we can show that the integrand is smallest at t = 0, i.e.,

hrf ((y � x)t + x)�rf (x), (y � x)t + x � xi � 0

hrf ((y � x)t + x)�rf (x), y � xi � 0

Therefore, we can say

f (y) � f (x) + hrf (x), y � xi

I If function is monotone, it’s convex.

I More rigorous proofs exist.
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Convex function

Example: For f (x) = x>Qx where Q is postive semidefinite, show f is convex using

definitions of convex functions.
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Convex function

Example: Show p-norm is convex.
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Convex function

Example: Show f (x , y) = x2/y is convex.

12 / 17

y I texas I X

it
I In E E

ItIs Er É

If 5 xy

xy m É I I s
w ty so



Convex function

Another way to show a function is convex is through convexity-preserving operations:

I Nonnegative weighted sum; i.e. if ↵,� � 0 and f1, f2 convex, ↵f1 + �f2 is convex.

I Pointwise maximum; i.e., if f1, ..., fm are convex, max{f1(x), ..., fm(x)} is convex.

I Composition with a�ne map; i.e., if f is convex, f (Ax + b) is convex.
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Convex function

More on convex functions..

I Notice from C 1
definition that rf (x) = 0 implies f (y) � f (x) for all y , so x is a

global minimizer; this further explains why least squares can be solved by setting

the derivative equal to zero.

I Strictly-convex function have at most one global minimum; w and v can’t both

be global minima if w 6= v ; it would imply convex combinations u of w and v
would have f (u) below the global minimum.
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Convex function

For strictly convex objective f there can be at most one global optimum.

Proof:

1. Suppose x⇤ is a local minimum and also there exists another local minimum x#

( 6= x⇤).

2. Since f is convex (because it is strictly convex), f (x⇤) and f (x#) are both global

minima, and f (x⇤) = f (x#).

3. The C 0
definition for y = ✓x⇤ + (1� ✓)x#, i.e.,

f (y) < ✓f (x⇤) + (1� ✓)f (x#) = ✓f (x⇤) + (1� ✓)f (x⇤) = f (x⇤)

contradicts that x⇤ is a global minimum.

4. This means that for x# to be a local minimum, it must be that x# = x⇤.
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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