CSED490Y: Optimization for Machine Learning

 Week 03-2: Convex optimizationNamhoon Lee

POSTECH
Spring 2022

Convex function
(*) $\quad \min _{x \in \mathbb{C}} f(x):$ convex opt. f, \mathbb{C} : convex
Convex function?
\{ A CO function is convex if and only if the function is below its chord between any two points.

- A CD C^{1} function is convex if and only if the function is above its tangent planes at any point.
- A (2)function is convex if and only if it is curved upwards everywhere.

Convex function
C^{0} definition of "convex "functions: line/chord, hetwam ay tas poines liec abve conuex

NOT

Convex function

C^{0} definition of convex functions
$\checkmark f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right), \quad \forall x_{1}, x_{2} \in \mathbb{R}^{n}$ and $0 \leq \theta \leq 1$.

Convex function
f : differentionble
*
C^{1} definition of convex functions: func, aluaw abve th tangent phome at angplet.

$$
\begin{aligned}
f(y) & \geq g(y) \\
& =f(x)+\langle\nabla f(x), y-x\rangle
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=f(x) \\
& g(y)-g(x)=\nabla g(x)^{\top}(y-x) \\
& \nabla g(x)=\nabla f(x)
\end{aligned}
$$

Convex function

r
C^{1} definition of convex functions

(*) $\quad f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \quad \forall x, y \in \mathbb{R}^{n}$.

Convex function
C^{2} definition of convex functions : f curved upurird

Convex function
C^{2} definition of convex functions

Convex function

twice $\begin{gathered}\text { ditherenumble }\end{gathered}$

Show that the definition is equivalent to the C^{1} deffnition.

Convex function

Show that the C^{2} definition is equivalent to the C^{1} deifnition.
First, let's recall the fundamental theorem of calculus:

$$
\int_{0}^{1} \underline{\underline{F^{\prime}(t)}} d t=F(1)-F(0)
$$

$$
\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}
$$

Convex function

Show that the C^{2} definition is equivalent to the C^{1} deifnition.
First, let's recall the fundamental theorem of calculus:

Now consider the following:

$$
\underbrace{\int_{0}^{1}=\overparen{F^{\prime}}(t) d t=F(1)-F(0)}
$$

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(\underbrace{t x+(1-t) y}_{(\text {, })}) d t=
$$

Convex function

Show that the C^{2} definition is equivalent to the C^{1} deifnition.
First, let's recall the fundamental theorem of calculus:

$$
\int_{0}^{1} F^{\prime}(t) d t=F(1)-F(0)
$$

Now consider the following:

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y) d t=\int_{0}^{1} \frac{d}{d \underline{d}}\binom{(x-y)}{\nabla f(t x+(1-t) y)} d t
$$

Convex function

Show that the C^{2} definition is equivalent to the C^{1} deifnition.
First, let's recall the fundamental theorem of calculus:

$$
\int_{0}^{1} F^{\prime}(t) d t=F(1)-F(0)
$$

Now consider the following:

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y) d t=\int_{0}^{1} \frac{d}{d t}(\nabla f(\underline{t x}+(1-\underline{t}) y)) d t=\underline{\nabla f(x)}-\nabla f(y)
$$

Convex function

Multiplying by $x-y$ both sides gives

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y)(\underline{(x-y)} d t=\langle\nabla f(x)-\nabla f(y), \underline{x-y}\rangle
$$

Convex function

Multiplying by $x-y$ both sides gives

$$
V^{\top} M V \geq 0 \quad \forall V \in \mathbb{R}^{d}
$$

$$
\begin{aligned}
& \int_{0}^{1}(x-y)^{\top} \underbrace{\nabla^{2} f(t x+(1-t) y)}(x-y) d t=\langle\nabla f(x)-\nabla f(y), x-y\rangle \\
& \geq 0
\end{aligned}
$$

By applying C^{2} definition, we obtain

$$
\text { * }\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

Convex function

Multiplying by $x-y$ both sides gives

$$
H\{x, y\}
$$

$$
\int_{0}^{1}(x-y)^{\top} \nabla^{2} f(t x+(1-t) y)(x-y) d t=\langle\nabla f(x)-\nabla f(y), x-y\rangle
$$

$$
\uparrow
$$

By applying C^{2} definition, we obtain

$$
\text { gIg } C^{2} \text { definition, we obtain }\left\{\begin{array}{r}
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \\
f \begin{array}{l}
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
\end{array} \\
\text { monotone: }\langle\nabla f(x)-\nabla f(y), x, y\rangle \geq 0, f(x) \geq f(x)+f(y)+\langle\nabla f(x), y-x\rangle \\
+\langle\nabla f(y, x-y\rangle
\end{array}\right\}
$$

$$
\begin{aligned}
& f(y)=f(x)+\langle\nabla f(x), y-x\rangle \\
& f(x)=f(y)+\langle\nabla f(y), x-y\rangle
\end{aligned}
$$

- It's called function is monotone; i.e., C^{2} function is monotone.
- You can also show that C^{1} function is monotone.

Convex function

Next, consider the following:

$$
\begin{aligned}
& \int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t \\
& \frac{d}{d t} f((y-x) t+x)
\end{aligned}
$$

Convex function

$$
\int_{0}^{1} F^{\prime}(t) d t=F(1)-F(0)
$$

Next, consider the following:

$$
\int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t=\int_{0}^{1} \frac{d}{d t}(f((y-x) t+x)) d t=
$$

Convex function

Next, consider the following:

$$
\int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t=\int_{0}^{1} \frac{d}{d t}(f((y-x) t+x)) d t=f(y)-f(x)
$$

Convex function

Next, consider the following:

$$
\begin{aligned}
& \int_{0}^{1} \nabla f((y-x) t+x)^{\top}(y-x) d t=\int_{0}^{1} \frac{d}{d t}(f((y-x) t+x)) d t=f(y)-f(x) \\
& \text { arranging it gives } \\
& \qquad f(y)=f(x)+\underbrace{1}_{0} \nabla f((y-x) t+x)^{\top}(y-x) d t
\end{aligned}
$$

c'det. $\quad f(y)=f(x)+\langle\pi f(x), y-x\rangle$

Convex function

We want to relate this to the C^{1} definition, while using monotonicity.

$$
*\langle\nabla \underset{=}{\cot , \overline{2}}(x)-\nabla f(y), x-y\rangle \geq 0
$$

Convex function

From the monotonicity, we can show that the integrand/is smallest at $t=0$, i.e.,

$$
\begin{array}{r}
\text { * }\langle\nabla f((y-x) t+x)-\nabla f(x),(y-x) t+\not x-\not x\rangle \geq 0 \\
\langle\nabla f((y-x) t+x)-\nabla f(x), y-x\rangle \geq 0 \\
L=h(t)-h(0) \geq 0 \Leftrightarrow h(t) \geq h(0) \\
\int_{0} h(t) \geq h(0) \quad L
\end{array}
$$

Convex function

From the monotonicity, we can show that the integrand is smallest at $t=0$, i.e.,

$$
\begin{aligned}
\langle\nabla f((y-x) t+x)-\nabla f(x),(y-x) t+x-x\rangle & \geq 0 \\
\langle\nabla f((y-x) t+x)-\nabla f(x), y-x\rangle & \geq 0
\end{aligned}
$$

Therefore, we can say

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

Convex function

From the monotonicity, we can show that the integrand is smallest at $t=0$, i.e.,

$$
\begin{aligned}
\langle\nabla f((y-x) t+x)-\nabla f(x),(y-x) t+x-x\rangle & \geq 0 \\
\langle\nabla f((y-x) t+x)-\nabla f(x), y-x\rangle & \geq 0
\end{aligned}
$$

Therefore, we can say

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

- If function is monotone, it's convex.
- More rigorous proofs exist.

Convex function

$$
\nu^{\top} M \nu \geq 0
$$

Example: For $f(x)=x^{\top} Q x$ where Q is positive semidefinite, show \underline{f} is convex using definitions of convex functions.

- $c^{2} \operatorname{def}$:

$$
\nabla f(x)=2 Q x .
$$

$$
\nabla^{2} f(x)=2 Q \text { no yes. }
$$

(2) $\frac{c^{\prime} d e f}{\uparrow}: \frac{f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle}{y^{\top} Q_{y} \stackrel{?}{\sum} x^{\top} Q_{x}+\left\langle 2 Q_{x}, y-x\right\rangle}$
(2)C def, $\quad y^{\top} Q_{y} \geq x^{\top} Q_{x}+2 x^{\top} Q_{y}-2 x^{\top} Q_{x}$

$$
y^{\top} Q_{y}-2 x^{\top} Q_{y}+x^{\top} Q x \geq 0
$$

$$
\int \operatorname{cin}^{(y)^{\top} Q(\underline{Q}-x)} \frac{?}{\geq 0} 0
$$

Convex function

Example: Show b-norm is convex.

Convex function

Example: Show $f(x, y)=x^{2} / y^{\prime \prime}$ is convex.
chat,

$$
\frac{2 x}{y} \quad \frac{x^{2}}{y^{2}}
$$

$$
\begin{gathered}
\nabla^{2} f=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x \partial x} & \frac{\partial^{2} f}{\partial y^{\partial x}} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{\partial y}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{y} & \frac{2 x}{y^{2}} \\
\frac{-2 x}{y^{2}} & \frac{2 x^{2}}{y^{3}}
\end{array}\right] \\
2
\end{gathered}
$$

$$
=\frac{2}{y^{3}}\left[\begin{array}{cc}
y^{2} & -x y \\
-x y & x^{2}
\end{array}\right]=\frac{2}{y 3}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{\top} \geq 0 \quad \forall y \geq 0
$$

Convex function

Another way to show a function is convex is through convexity-preserving operations:

- Nonnegative weighted sum; i.e. if $\underline{\alpha, \beta \geq 0}$ and f_{1}, f_{2} convex, $\alpha f_{1}+\beta f_{2}$ is convex.
- Pointwise maximum; i.e., if f_{1}, \ldots, f_{m} are convex, $\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex.
- Composition with affine map; i.e., if f is convex, $f(A x+b)$ is convex.

Convex function

$$
f(y) \geq f(x)+<(\nabla f(x), y-x\rangle
$$

\rightarrow

More on convex functions..

- Notice from C^{1} definition that $\nabla f(x)=0$ implies $f(y) \geq f(x)$ for all y, so x is a global minimizer; this further explains why least squares can be solved by setting the derivative equal to zero.
- Strictly-convex function have at most one global minimum; w and v can't both be global minima if $w \neq v$; it would imply convex combinations u of w and v would have $f(u)$ below the global minimum.

Convex function

For strictly convex objective f there can be at most one global optimum.

Convex function

For strictly convex objective f there can be at most one global optimum.
Proof:

1. Suppose x^{*} is a local minimum and also there exists another local minimum $x^{\#}$ $\left(\neq x^{*}\right)$.

Convex function

For strictly convex objective f there can be at most one global optimum.
Proof:

1. Suppose x^{*} is a local minimum and also there exists another local minimum $x^{\#}$ $\left(\neq x^{*}\right)$.
2. Since f is convex (because it is strictly convex), $f\left(x^{*}\right)$ and $f\left(x^{\#}\right)$ are both global minima, and $f\left(x^{*}\right)=f\left(x^{\#}\right)$.

Convex function

For strictly convex objective f there can be at most one global optimum.

Proof:

1. Suppose x^{*} is a local minimum and also there exists another local minimum $x^{\#}$ $\left(\neq x^{*}\right)$.
2. Since f is convex (because it is strictly convex), $f\left(x^{*}\right)$ and $f\left(x^{\#}\right)$ are both global minima, and $f\left(x^{*}\right)=f\left(x^{\#}\right)$.
3. The C^{0} definition for $y=\theta x^{*}+(1-\theta) x^{\#}$, i.e.,

$$
f(y)<\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{\#}\right)=\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{*}\right)=f\left(x^{*}\right)
$$

contradicts that x^{*} is a global minimum.

Convex function

For strictly convex objective f there can be at most one global optimum.

Proof:

1. Suppose x^{*} is a local minimum and also there exists another local minimum $x^{\#}$ $\left(\neq x^{*}\right)$.
2. Since f is convex (because it is strictly convex), $f\left(x^{*}\right)$ and $f\left(x^{\#}\right)$ are both global minima, and $f\left(x^{*}\right)=f\left(x^{\#}\right)$.
3. The C^{0} definition for $y=\theta x^{*}+(1-\theta) x^{\#}$, i.e.,

$$
f(y)<\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{\#}\right)=\theta f\left(x^{*}\right)+(1-\theta) f\left(x^{*}\right)=f\left(x^{*}\right)
$$

contradicts that x^{*} is a global minimum.
4. This means that for $x^{\#}$ to be a local minimum, it must be that $x^{\#}=x^{*}$.

Thank you

Any questions?

Credits

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

