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Admin

Warnings based on the current progress: —
¢ : Proe Tople Wé Moﬂi@\
1. Students with no contact F — =

2. Single member group C_
Weg

3. Group without project topic
4. Group with project out of context _28, Mmrd'\

Team uErg(Due>extended: 11:59PM onA/Ionday 21 MaEcB):WG- [\:¢a PM
» Form a group of up to 3 members. -

( > Emai@ about your group members by the due date.
» You may use the discussion board on PLMS to find your teammates.
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Admin

New requirements:

» Avoid late submission: if you miss the due date, you will receive a penalty of 10%

of the total marks. —< /%

» Submit a (self-)plagiarism statement: I certify that this project is entirely my own
work, and | have not previously worked, am currently working or planning to work

on any aspect of this course project ..” — TA will soon send out a form to sign.
A

= prevent qug P metesols =
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Admin

New requirements:

» Avoid late submission: if you miss the due date, you will receive a penalty of 10%
of the total marks.

» Submit a (self-)plagiarism statement: I certify that this project is entirely my own
work, and | have not previously worked, am currently working or planning to work
on any aspect of this course project ..” — TA will soon send out a form to sign.

4 Important:
> Make sure to check important dates for project.
» This course does not require any assignments other than project.

B If there is anything you are not sure of about the project, come talk to me.
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Convex function

Foy = 4o) + <oHfx), YX> dilwcran bl s

- e dHs
More on convex fungctions.. /\/ opt (e A
» Notice from C?! definition thatéVf(x! -0 Implies f(y) > f(x) forall y, so x is a

global minimizer; this further explains why least squares can be solved by setting

the derivative equal to zero.

V(istrictly onvex function have at most one global minimum; w and v can’t both
e global minima if w # v; it would imply convex combinations v of w and v
would have f(u) below the global minimum.
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Convex function

For strictly convex objective f there can be at most one global optimum.
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Convex function

For strictly convex objective f there can be at most one global optimum.

Proof: u X#ef X"

: *. . : .
1. Suppose @ls a local’minimum and also there exists another local minimum x#

(+ x°).
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Convex function

For strictly convex objective f there can be at most one global optimum.
Proof: T 5 la) > ghen) mn

1. Suppose x* is a local minimum and also there exists another local minimum x#
(# x*).

2. Since f is convex (because it is strictly convex), f(x*) and f(x*) are both global
minima, and f(x*) = f(x7).
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Convex function
conueq

For strictly convex objedtive f there can be at most one global optimum.

Proof , Cﬁ(@ X+ (H8)A7) ! C 6t < -
. l —
1. Supposé x* is a local” l{'and als ' er local minimum x#
* / ]
£ x] ST
2. Since f is convex (because it is strictly convex), f(x*) and f(x*) are both global
minimh, and Zf(x*) = f(x7). T

3. The C° definition for y = Ox* + (1 — 0)x7, i.e.

Fly) < OF(x*) + (1 — ez F(x*) };ef(x*) F(1- QYE(XT)L F(x*)

—_— . ——

contradicts that x* is a global minimum.

—
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Convex function

For strictly convex objective f there can be at most one global optimum.

Proof:

1.

v 4.

Suppose x* is a local minimum and also there exists another local minimum x#
(# x¥).

Since f is convex (because it is strictly convex), f(x*) and f(x*) are both global
minima, and f(x*) = f(x7).

The CO definition for y = Ox* + (1-— H)X#, ie.

fy) < 0F(x*) + (1 — O)F(xT) = 0F (x*) + (1 — O)F(x*) = f(x¥)
contradicts that x* is a global minimum.

This means that for@ to be a local minimum, it must be that x# = x*.
—_—
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Gradient descent
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Gradient descent @ Cioss — valTdetle,
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Gradient descent

T Xen = X - ZVFF(Xti) (GD)

Gradient descent algorithm
L he dy o sitaiinin £€X)
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Cost of solving (regularized) least squares with GD
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Smoothness

Lipschitz continuous objective gradients

A differentiable function f is called L-smooth if there exists an L > 0 such that the
following satisfies:

[VF(x) = VW)l < Llx =yl Y{xy}.
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Smoothness

Lipschitz continuous objective gradients

A differentiable function f is called L-smooth if there exists an L > 0 such that the
following satisfies:

IVE(x) = VEW)I < Llix =yl ¥{x,y}

» Gradient does not change arbitrarily quickly.
» Intuitively, without it the gradient would not be useful to decrease f.
» |t is essential for convergence analyses of most gradient based methods.

» This is a fairly weak assumption and holds true for most ML models (including
neural networks with smooth activations).
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Smoothness

An important consequence of Lipschitz continuous objective gradient:
T L 2
F(y) < F() + TF()T (v = %)+ 5y = 2

Proof (recall ftc):
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Smoothness

An important consequence of Lipschitz continuous objective gradient:

Fy) < F0) + V)T (y =) + 5y —xP

[llustration:
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Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient
descent can make at each step.
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Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient
descent can make at each step.

Consider gradient descent with n = 1/L.

1
Xt+1 = Xt — sz(Xt) .
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Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient
descent can make at each step.

Consider gradient descent with n = 1/L.

1
Xt+1 = Xt — sz(Xt) .

Plugging this into the bound gives
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Convergence of gradient descent

From the C! definition of convex function, we can get

f(x) < f(x*)+ Vf(Xt)T(Xt — x¥)
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Convergence of gradient descent

From the C! definition of convex function, we can get

f(x) < f(x*)+ Vf(Xt)T(Xt — x¥)

Plugging this into the progress bound we derived previously gives
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Convergence of gradient descent
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Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:
» Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Convex Optimization, Ryan Tibshirani.

>
>
» Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
» Optimization Algorithms, Constantine Caramanis.

>

Advanced Machine Learning, Mark Schmidt.
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