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Admin

Warnings based on the current progress:

1. Students with no contact

2. Single member group

3. Group without project topic

4. Group with project out of context

Team up (Due–extended: 11:59PM on Monday 21 March):

I Form a group of up to 3 members.

I Email TA about your group members by the due date.

I You may use the discussion board on PLMS to find your teammates.
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Admin

New requirements:

I Avoid late submission: if you miss the due date, you will receive a penalty of 10%

of the total marks.

I Submit a (self-)plagiarism statement: “I certify that this project is entirely my own

work, and I have not previously worked, am currently working or planning to work

on any aspect of this course project ..” – TA will soon send out a form to sign.

Important:

I Make sure to check important dates for project.

I This course does not require any assignments other than project.

I If there is anything you are not sure of about the project, come talk to me.
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Convex function

More on convex functions..

I Notice from C 1
definition that rf (x) = 0 implies f (y) � f (x) for all y , so x is a

global minimizer; this further explains why least squares can be solved by setting

the derivative equal to zero.

I Strictly-convex function have at most one global minimum; w and v can’t both

be global minima if w 6= v ; it would imply convex combinations u of w and v
would have f (u) below the global minimum.
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Convex function

For strictly convex objective f there can be at most one global optimum.

Proof:

1. Suppose x⇤ is a local minimum and also there exists another local minimum x#

( 6= x⇤).

2. Since f is convex (because it is strictly convex), f (x⇤) and f (x#) are both global

minima, and f (x⇤) = f (x#).

3. The C 0
definition for y = ✓x⇤ + (1� ✓)x#, i.e.,

f (y) < ✓f (x⇤) + (1� ✓)f (x#) = ✓f (x⇤) + (1� ✓)f (x⇤) = f (x⇤)

contradicts that x⇤ is a global minimum.

4. This means that for x# to be a local minimum, it must be that x# = x⇤.
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Gradient descent

Least squares
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Gradient descent

L2 regularized Least squares
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Gradient descent

Cost of solving (regularized) least squares
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Gradient descent

Gradient descent algorithm
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Gradient descent

Cost of solving (regularized) least squares with GD
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Smoothness

Lipschitz continuous objective gradients

A di↵erentiable function f is called L-smooth if there exists an L > 0 such that the

following satisfies:

krf (x)�rf (y)k  Lkx � yk 8{x , y} .

I Gradient does not change arbitrarily quickly.

I Intuitively, without it the gradient would not be useful to decrease f .

I It is essential for convergence analyses of most gradient based methods.

I This is a fairly weak assumption and holds true for most ML models (including

neural networks with smooth activations).
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Smoothness

An important consequence of Lipschitz continuous objective gradient:

f (y)  f (x) +rf (x)>(y � x) +
L

2
ky � xk2 .

Proof (recall ftc):
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Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient

descent can make at each step.

Consider gradient descent with ⌘ = 1/L.

xt+1 = xt �
1

L
rf (xt) .

Plugging this into the bound gives
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Convergence of gradient descent

From the C 1
definition of convex function, we can get

f (xt)  f (x⇤) +rf (xt)
>
(xt � x⇤)

Plugging this into the progress bound we derived previously gives
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Convergence of gradient descent
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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