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Admin

Group project

I Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

I (when) Commencing on 11 April

I (where) Engineering building 2, Room 109

O�ce hours

I Thursdays 5-6pm (by appointment)

Quick poll

2 / 13



Admin

Group project

I Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

I (when) Commencing on 11 April

I (where) Engineering building 2, Room 109

O�ce hours

I Thursdays 5-6pm (by appointment)

Quick poll

2 / 13



Admin

Group project

I Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

I (when) Commencing on 11 April

I (where) Engineering building 2, Room 109

O�ce hours

I Thursdays 5-6pm (by appointment)

Quick poll

2 / 13



Admin

Group project

I Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

I (when) Commencing on 11 April

I (where) Engineering building 2, Room 109

O�ce hours

I Thursdays 5-6pm (by appointment)

Quick poll

2 / 13



Gradient descent

Cost of solving (regularized) least squares

I O(nd2 + d3) vs O(ndt)

How many iterations does GD require?
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Gradient descent

GD algorithm

I An iterative algorithm to find a minimum.

I Update the current iterate by taking a step into the negative direction of gradient.

I Stop when it isn’t making any progress in practice.

Another way to motivate GD: function approximation.

Need to analyze convergence behaviour.
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Gradient descent

Assumption: Lipschitz continuity of objective gradient (or smoothness)

I (definition)

I (meaning)

I (illustration)
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Smoothness

An important consequence of Lipschitz continuous objective gradient:

f (y)  f (x) +rf (x)>(y � x) +
L

2
ky � xk2 .

Proof (recall ftc):
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Smoothness

An important consequence of Lipschitz continuous objective gradient:

f (y)  f (x) +rf (x)>(y � x) +
L

2
ky � xk2 .

Illustration:
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Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient
descent can make at each step.

Consider gradient descent with ⌘ = 1/L.

xt+1 = xt �
1

L
rf (xt) .

Plugging this into the bound gives
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Convergence of gradient descent

Convergence rate for smooth function

I Prove from the progress bound.
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Convergence of gradient descent

Convergence rate for smooth convex function

I Prove from the convexity and plugging into the progress bound.
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Gradient descent

Summary

I GD algorithm and motivations

I GD Convergence rates
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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