CSED490Y: Optimization for Machine Learning

Week 04-2: Gradient descent

Namhoon Lee

POSTECH

Spring 2022

Group project

Submit the plagiarism pledge form (available on PLMS)

Group project

Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

- (when) Commencing on 11 April
- (where) Engineering building 2, Room 109

Group project

Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

- (when) Commencing on 11 April
- (where) Engineering building 2, Room 109

Office hours

Thursdays 5-6pm (by appointment)

Group project

Submit the plagiarism pledge form (available on PLMS)

Switching to in-person class

- (when) Commencing on 11 April
- (where) Engineering building 2, Room 109

Office hours

Thursdays 5-6pm (by appointment)

Quick poll

Cost (of solving (regularized) least squares $O(nd^2 + d^3)$ vs O(ndt)Gradient descent O(nd² + d³²) vs O(ndt) A enumps) A features A features A parameters

How many iterations does GD require?

Gradient descent :
$$X_{t+1} = X_t - O \nabla f(X_t)$$

GD algorithm
An iterative algorithm to find a minimum.
Update the current iterate by taking a step into the negative direction of gradient.
Stop when it isn't making any progress in practice.
Main $f(x) \simeq f(x_t) + \langle \nabla f(x_t), x - x_s \rangle + f(X - x_s)$
 $x + x \in \mathbb{R}^3$
Need to analyze convergence behaviour.
Main $f(x_t) = 0$ \Rightarrow $X = x_0 - O \nabla f(X_s)$
 $X = \frac{1}{2}(X - x_s) = 0 \Rightarrow$ $X = x_0 - O \nabla f(X_s)$
 $4/13$

Gradient descent

$$\int_{0}^{1} \nabla f((t-t)x + ty)^{T}(y-x) dt = (f(y) - f(x))^{T}(y-x) dt = (f(y) - f(y))^{T}(y-x) dt = (f(y) - f(y))^{$$

An important consequence of Lipschitz continuous objective gradient:

$$\underbrace{f(y) \leq f(x) + \nabla f(x)^{\top}(y-x)}_{\infty} + \underbrace{\mathcal{D}}_{2} \|y-x\|^{2}.$$

Illustration:

Under the quadratic upper bound, we are interested in how much progress gradient descent can make at each step.

Under the quadratic upper bound, we are interested in how much progress gradient descent can make at each step.

Consider gradient descent with n = 1/L.

$$x_{t+1} = x_t - \frac{1}{L} \nabla f(x_t) \; .$$

Gradient descent progress bound

Under the quadratic upper bound, we are interested in how much progress gradient descent can make at each step.

Consider gradient descent with $\eta = 1$ L. $x \to x_{t+1} = x_t - \frac{1}{L} \nabla f(x_t)$. $x \to x_t$ $x_{t+1} = x_t - \frac{1}{L} \nabla f(x_t)$. $y \to x_{t+1}$ $x \to x_t$ Plugging this into the bound gives

$$f(X_{en}) \leq f(x_{e}) + \nabla f(x_{e})^{T} (X_{t+1} - X_{e}) + \sum_{i=1}^{i} ||X_{t+1} - X_{e}||^{2}$$

$$= f(X_{e}) - \frac{1}{i} ||\nabla f(x_{e})||^{2} + \frac{1}{i} ||\nabla f(x_{e})||^{2}$$

$$= \frac{1}{i} ||\nabla f(x_{e})||^{2}$$

Convergence of gradient descent $\underline{\ell} \rightarrow o(\underline{\prime})$ $(\underline{\prime} + \underline{\ell})$
$O(\frac{1}{2c}) = grid + f(X_{tTI}) \leq f(X_{t}) - \frac{1}{2L} \ \nabla f(X_{t})\ ^{2}$ Convergence rate for smooth function $f^{*} \leq f(X_{t})$
Prove from the progress bound.
$\ \nabla f(x_e)\ \leq 2L(f(x_e) - f(x_{en})) \ \nabla f(x_e)\ \sim e^{nor} \Rightarrow 0$
sum both sides for t = 1,, T
$\overline{F}_{t=1} \ \nabla f(X_{t}) \ ^{2} = 2L \sum_{t=1}^{T} (f(X_{t}) - f(X_{t})) = 2L ((f(X_{t}) - f(X_{t})) + (f(X_{t}) - f(X_{t})) + \dots$
$= 2L(f(x_1) - f(x_T)) \leq 2L(f(x_2) - f(x_T))$
$T_{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ t = 1_{\ell} \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] \Rightarrow \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right) \\ \hline t = 1_{\ell} \\ \hline t \end{array} \right] = \left[\begin{array}{c} \overline{\text{min}} \ \nabla f(x_{\ell}) \ ^{2} \leq 2 \left(f(x_{\ell}) - f^{*} \right$

Convergence of gradient descent

Convergence rate for smooth convex function

Prove from the convexity and plugging into the progress bound.

Summary

- ► GD algorithm and motivations
- GD Convergence rates

Any questions?

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.