CSED490Y: Optimization for Machine Learning

Week 05-1: Subgradient and projected gradient methods
w6

Namhoon Lee
POSTECH
Spring 2022

Admin $\Gamma^{\text {" we propose a newidee } X \text { tor } Y^{\prime \prime} \rightarrow r k}$ No need to "Invent" something new.
Requirements of group project due tonight: study existing Mothod/ideas that are

1. Choose topic
2. Submit the plagiarism statement
intuition / new phenomurion,
relevant to this course, such that you get
(1) practical experience.
(2) creeper unterstenndz.

Tuner - workings
(3) something "interesficy"

Admin

Requirements of group project due tonight:

1. Choose topic
2. Submit the plagiarism statement

- coss landscape

Some examples

Gradient descent

So far

- GD: algorithm and motivation gradient of f is Lipchitz continuous.
- Analysing GD under the smoothness assumption

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

L grad. court change too quickly.

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Convergence of gradient descent

Q: How many thenafions do we need to run $A+1 D$ To adicive \&-accuracy? $T=O(1 / \varepsilon)$

Convergence of gradient descent subfitite $x, y \rightarrow x_{t}, x^{*}$

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \Rightarrow f\left(x^{*}\right) \geq f\left(x_{t}\right)+\left\langle\nabla f\left(x_{c}\right), x^{*}-x_{2}\right)
$$

Convergence rate for smooth convex function
Prove from the convexity and plugging into the progress bound. $\left.f\left(k_{k=1}\right) \leq f\left(x_{1}\right)-\frac{1}{2 L}\left(10 f_{x}\right)_{1}\right)^{2}$

$$
\begin{aligned}
f\left(x_{\tau}\right) & \leq f\left(x^{*}\right)+\left\langle\nabla f\left(x_{t}\right), x_{t}=x^{*}\right\rangle \\
f\left(x_{t+1}\right) \leq f\left(x^{*}\right) & +\left\langle\nabla f\left(x_{\tau}\right), x_{\tau}-x^{*}\right\rangle-\frac{1}{2 L}\left\|\nabla f\left(k_{t}\right)\right\|^{(a-b)^{2}=a^{2}-2 a \cdot b+b^{2}} \\
f\left(x_{t+1}\right)-f\left(x^{*}\right) & \leq \frac{L}{2}\left(\frac{2}{L}\left\langle\nabla f\left(x_{\tau}\right), x_{\tau}-x^{*}\right\rangle-\frac{1}{\left.l^{2}\left\|\nabla f\left(x_{t}\right)\right\|^{2}+\left\|t-x^{*}\right\|^{2}-\left\|x_{t}-x^{*}\right\|^{2}\right)}\right. \\
& =\frac{L}{2}\left(\left\|x_{t}-x^{*}\right\|^{2}-\left\|x_{t}-\frac{1}{L} \nabla f\left(x_{\tau}\right)-x^{*}\right\|^{2}\right) \\
& =\frac{L}{2}\left(\left\|x-x^{*}\right\|^{2}-\left\|x_{t+1}-x^{*}\right\|^{2}\right)
\end{aligned}
$$

Convergence of gradient descent - cont'd

$$
f\left(x_{k+1}\right) \leq f\left(x_{e}\right)
$$

$$
x_{t+1} x x^{*}
$$

Convergence rate for smooth convex function

Prove from the convexity and plugging into the progress bound.

$$
\begin{aligned}
& f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq \frac{L}{2}\left(\left\|x_{2}-x^{*}\right\|^{2}-\left\|x_{t+1}-x^{*}\right\|^{2}\right) \\
& \frac{\sum_{t=1}^{E} f\left(k_{t+1}\right)-f\left(x^{*}\right)}{v /} \leq \frac{L}{2} \sum_{t=1}^{T}\left(\left\|x_{t}-x^{*}\right\|^{2}-\left\|x_{t+1}-x^{*}\right\|^{2}\right)=\frac{L}{2}\left(\left\|x_{1}-x^{*}\right\|^{2}-\left\|x_{T+1}-x^{*}\right\|^{2}\right) \\
& \text { T(f(} \left.\left.x_{t+1}\right)-f\left(x^{*}\right)\right) \\
& f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq \frac{L e^{2}}{2(1)} \\
& \overbrace{R}^{\sim} \overbrace{R}^{\sim} \frac{1}{T} \\
& T \sim \frac{1}{\varepsilon}
\end{aligned}
$$

Gradient descent

Gradient descent

Summary

- GD algorithm and motivation
- GD convergence rate
- Convergence criterion
- Dimension free

Next

- strongly convex case
- non-smooth case

Convex function - differentiable case

Recall the C^{1} definition:

Convex function - non-differentiable case

(A non-differentiable case)

Convex function - non-differentiable case

(A non-differentiable case)

Generalizing to non-nondifferentiable case. A function is convex if $\forall x, \exists$ (g) such that

$$
f(y) \geq f(x)+\underset{=}{\langle g, y-x\rangle .}
$$

Subgradient and subdifferential

A vector g_{x} is called a subgradient of a convex function f at x if

$$
f(y) \geq f(x)+\left\langle g_{k} y-x\right\rangle, \quad \forall y
$$

Subgradient and subdifferential

A vector g is called a subgradient of a convex function f at x if

$$
f(y) \geq f(x)+\langle g, y-x\rangle, \quad \forall y
$$

The set of subgradients of f at x is called subdifferential $\partial f(x)$.

$g_{x} \in \partial f(x)$

Subgradient and subdifferential

A vector g is called a subgradient of a convex function f at x if

$$
f(y) \geq f(x)+\langle g, y-x\rangle, \quad \forall y
$$

The set of subgradients of f at x is called subdifferential $\partial f(x)$.

- If a function f is differentiable at x, the gradient is the only element in the subdifferential $\partial f(x)$, i.e., $g_{x}=\nabla f(x)$
- The optimality condition for non-differentiable function: x^{*} is a global minimum if $0 \in \partial f\left(x^{*}\right)$.
$\nabla f\left(x^{*}\right)=0$

Subdifferential example

An absolute value function:

Non-smooth problem

L1 regularized least squares

- You can obtain a sparse solution.
- It can be used for feature selection.

L1 vs L2 regularization

L2 regularized least squares

L1 vs L2 regularization

L2 regularized least squares

L1 regularized least squares

Thank you

Any questions?

Credits

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

