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Admin

Requirements of group project due tonight:

1. Choose topic

2. Submit the plagiarism statement

Some examples
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Gradient descent

So far

I GD: algorithm and motivation

I Analysing GD under the smoothness assumption
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Convergence of gradient descent

Convergence rate for smooth function

I Prove from the progress bound.
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Convergence of gradient descent

Convergence rate for smooth convex function

I Prove from the convexity and plugging into the progress bound.
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Convergence of gradient descent – cont’d

Convergence rate for smooth convex function

I Prove from the convexity and plugging into the progress bound.
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Gradient descent

Summary

I GD algorithm and motivation

I GD convergence rate

I Convergence criterion

I Dimension free

Next

I strongly convex case

I non-smooth case
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Convex function – di↵erentiable case

Recall the C 1
definition:

f (y) � f (x) + hrf (x), y � xi
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Convex function – non-di↵erentiable case

(A non-di↵erentiable case)

Generalizing to non-nondi↵erentiable case: A function is convex if 8x , 9g such that

f (y) � f (x) + hg , y � xi .
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Subgradient and subdi↵erential

A vector g is called a subgradient of a convex function f at x if

f (y) � f (x) + hg , y � xi , 8y .

The set of subgradients of f at x is called subdi↵erential @f (x).

I If a function f is di↵erentiable at x , the gradient is the only element in the

subdi↵erential @f (x), i.e., gx = rf (x).

I The optimality condition for non-di↵erentiable function: x⇤ is a global minimum if

0 2 @f (x⇤).
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Subdi↵erential example

An absolute value function:
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Non-smooth problem

L1 regularized least squares

I You can obtain a sparse solution.

I It can be used for feature selection.
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L1 vs L2 regularization

L2 regularized least squares

L1 regularized least squares
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L1 vs L2 regularization

L2 regularized least squares

L1 regularized least squares
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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