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Gradient descent example

Solve f (x) = 3x2 + 4x � 2 using GD
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Gradient descent example

From the previous example

I solution

I convergence

I stepsize

I initial guess
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Subgradient and subdi↵erential

A vector g is called a subgradient of a convex function f at x if

f (y) � f (x) + hg , y � xi , 8y .

The set of subgradients of f at x is called subdi↵erential @f (x).

I If a function f is di↵erentiable at x , the gradient is the only element in the

subdi↵erential @f (x), i.e., gx = rf (x).

I The optimality condition for non-di↵erentiable function: x⇤ is a global minimum if

0 2 @f (x⇤).
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Subdi↵erential example

An absolute value function:
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Non-smooth problem

L1 regularized least squares

I You can obtain a sparse solution.

I It can be used for feature selection.
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L1 vs L2 regularization
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L1 vs L2 regularization

L2 regularized least squares

L1 regularized least squares
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L1 vs L2 regularization

L2 regularized least squares

L1 regularized least squares
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Subgradient method

Subgradient method:

xt+1 = xt � ⌘gxt

where gxt 2 @f (xt).

I Gradient descent for non-di↵erentiable cases.

I Applicable to the previous example of absolute value function.

9 / 14



Subgradient method example

f (x) = |x |
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Subgradient method example

f (x1, x2) = |x1|+ 2|x2|
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Gradient descent vs subgradient method

Di↵erences between gradient descent and subgradient method:

I Gradient descent improves at every iteration, unlike sub-gradient method.

I Gradient descent can take a big step size: self-tuning property.

I Gradient descent takes bigger steps when far away.
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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