# CSED490Y: Optimization for Machine Learning 

 Week 06-2: Proximal gradient descentNamhoon Lee<br>POSTECH<br>Spring 2022

## Admin

Reminder:

- Lectures on campus (Enginnering Bldg 2, Room 109) starting next week.
- Midterm exam on Monday 25 April.


## Smoothness

Recall $\beta$-smoothness:

Smoothness

A bound on suboptimality of any point: if $f$ is $\beta$-smooth,

$$
\frac{1}{2 \beta}\|\nabla f(x)\|_{2}^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{\beta}{2}\left\|x-x^{*}\right\|_{2}^{2}
$$

proof - directly firm suroothners

Smoothness

Co-coercivity: for $f \beta$-smooth convex,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{1}{\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

(1) $f(y)-(f(x)+\langle\nabla f(x), y-x\rangle) \geq \frac{1}{2 \beta}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}$
(2) $f(x)-(f(y)+\langle\nabla f(y), x-y\rangle) \geq \frac{r}{2 \beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}$
(1) +(2) $\Rightarrow$

Smoothness
Extension of co-coercivity: for $f<$-strongly convex and $\beta$-smooth,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\alpha \beta}{\alpha+\beta}\|x-y\|_{2}^{2}+\frac{1}{\alpha+\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

First, $\underbrace{g(x)}_{\text {g }}=f(x)-\frac{\alpha}{2}\|x\|_{\text {convex }}^{2} \underbrace{\text { is }}(\beta-\alpha)$-smooth. $\Rightarrow\langle\nabla g(x)-\nabla g(y), x-y\rangle \geq \frac{1}{\beta-1} \eta \nabla g(x)-\nabla g(y))^{2}$

$$
\begin{aligned}
& g(y) \leq g(x)+\langle\nabla g(x), y-x\rangle+\frac{\beta-\alpha}{2}\|y-x\|_{2}^{2} \\
& f(y)-\frac{\alpha}{2}\|y\|_{2}^{2} \leq f(x)-\frac{\alpha}{2}\|x\|^{2}+\langle\nabla f(x)-\alpha x, y-x\rangle+\frac{\beta-\alpha}{2}\|y-x\|_{2}^{2} \\
& f(y) \leq f(x)+\langle\sigma f(x), y-x\rangle+\frac{\beta}{2}\|y-x\|_{2}^{2}-\beta-\text { smooth }
\end{aligned}
$$

Smoothness

$$
g(x)=f(x)-\frac{\alpha}{2}\|x\|_{2}^{2}
$$

Extension of co-coercivity (cont'd):

$$
\begin{aligned}
&\left.\langle\nabla g(x)-\nabla g(y), x-y\rangle \geq \frac{1}{\beta-1} \| \nabla g(x)-\nabla g(y)\right)^{2} \\
&\langle\nabla f(x)-\alpha x-(\nabla f(y)-\alpha y), x-y\rangle \geq \frac{1}{\beta-\alpha}\|\nabla f(x)-\alpha x-(\nabla f(y)-\alpha y)\|_{2}^{2} \\
&\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \alpha\|x-s\|_{2}^{2}+\frac{1}{\beta-\alpha}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \\
&\left.-\frac{2 \alpha}{\beta-\alpha}\langle\nabla f(x)-\nabla f y), x-y\right\rangle+\frac{\alpha^{2}}{\beta-\alpha} \|\left(x-y \|_{2}^{2}\right. \\
&\langle\nabla f(x)-\nabla f y \mid, x-y\rangle \geq \frac{\alpha \beta}{\alpha+\beta}\|x-y\|_{2}^{2}+\frac{1}{\alpha+\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\end{aligned}
$$

Convergence of GD for smooth and strongly convex functions

$$
\begin{aligned}
& \text { (proof) } x_{t+1}=x_{t}-\eta \nabla f\left(x_{k}\right), \eta=\frac{2}{\alpha+\beta} \\
& \left\|x_{t+1}-x^{*}\right\|_{2}^{2}=\left\|\dot{x}_{t}-\eta \nabla f\left(x_{t}\right)-x^{*}\right\|_{2}^{2} \\
& \left.=\left\|x_{t}-x^{*}\right\|_{2}{ }^{2}-{ }^{2} \eta\left\langle\nabla f\left(x_{c}\right)-\nabla f\left(x^{*}\right), x_{\tau}-x^{*}\right\rangle\right\rangle+\eta^{2}\left\|\nabla f\left(x_{\tau}\right)\right\|_{2}^{2} \\
& \leq{\underline{\| x_{t}}-x^{*} \|_{2}^{2}}^{-2 \eta\left(\frac{\alpha \beta}{\alpha+\beta} \underline{\| x_{t}-x^{*}\left(\left.\right|^{2}\right.}+\frac{1}{\alpha+\beta} \| \underline{\| f\left(x_{t}\right)}-\underline{\nabla f\left(x^{*}\right) \|_{2}^{2}}\right)+\bar{\eta}\left(\nabla-f(x) \|_{k}^{2}\right.} \\
& =\left(1-2 \eta \frac{\alpha \beta}{\alpha+\beta}\right)\left\|x_{\tau}-x^{2}\right\|^{2}+\left(\eta^{2}-2 \eta \frac{1}{\alpha+\beta}\right)\left\|\nabla f\left(x_{\tau}\right)\right\|_{2}^{2}
\end{aligned}
$$

Convergence of GD for smooth and strongly convex functions

$$
\begin{aligned}
& \text { (proof - contd) } \\
& \eta=\frac{2}{\alpha+\beta} \\
& \left\|k_{k+1}-x^{*}\right\|_{2}^{2} \leq\left(1-2 \eta \frac{\alpha \beta}{\alpha+\beta}\right)\left\|x_{c}-x^{*}\right\|^{2}+\left(x^{2}-2 x \frac{1}{\alpha+\beta}\right)\left\|\nabla f\left(x_{c}\right)\right\|_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \sim \rho^{t} \Leftrightarrow t \sim \log \left(V_{a}\right)
\end{aligned}
$$

Summary
f $\alpha$-strangly calces \& $\beta$ - smoth

$$
\begin{equation*}
\varepsilon \sim \rho^{t} \quad t \sim \lg \left(l_{\varepsilon}\right) \tag{1}
\end{equation*}
$$

- suhgradient $\sim \frac{1}{\sqrt{T}} \sim \frac{2}{\varepsilon^{2}}$
- GD smooth $\frac{1}{T} \frac{1}{\varepsilon}$


## Projected gradient method

So far we have seen unconstrained optimization problems:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- any $x \in \mathbb{R}^{n}$ can be a solution.


## Projected gradient method

So far we have seen unconstrained optimization problems:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- any $x \in \mathbb{R}^{n}$ can be a solution.

For constrained optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

- now $x$ must be in the set $\mathbb{C}$.


## Projected gradient method

So far we have seen unconstrained optimization problems:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- any $x \in \mathbb{R}^{n}$ can be a solution.

For constrained optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

- now $x$ must be in the set $\mathbb{C}$.

GD is the standard way to solve the unconstrained optimization problems.

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Q: Can we apply GD to solve the constrained optimization problem?

## Projected gradient method

So far we have seen unconstrained optimization problems:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- any $x \in \mathbb{R}^{n}$ can be a solution.

For constrained optimization problem:

$$
\min _{x \in \mathbb{C}} f(x)
$$

GD is the standard way to solve the unconstrained optimization problems.

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Q: Can we apply GD to solve the constrained optimization problem?

Idea: use projection!

- now $x$ must be in the set $\mathbb{C}$.


## Projected gradient method

$\checkmark$ Step 1: Update $x_{t}$ by GD


$$
y_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Step 2: Project onto the set $\mathbb{C}$

$$
\begin{gathered}
x_{t+1}=\operatorname{proj}_{\mathbb{C}}\left(y_{t+1}\right) \\
\uparrow=-
\end{gathered}
$$

If the updated point gets outside $\mathbb{C}$, project it back to the set.

## Projected gradient method

The projection operator $\operatorname{proj}_{\mathbb{C}}(\cdot)$ is an optimization problem by itself:

$$
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right)=\underset{\underset{\sim}{x \in \mathbb{C}}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

i.e., given a point $x_{0}$, find a point $x \in \mathbb{C}$ that is closest to $x_{0}$.

## Projected gradient method

The projection operator $\operatorname{proj}_{\mathbb{C}}(\cdot)$ is an optimization problem by itself:

$$
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right)=\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

i.e., given a point $x_{0}$, find a point $x \in \mathbb{C}$ that is closest to $x_{0}$.


$$
\text { When } x_{0} \in \mathbb{C} \text { : }
$$

- The closest point to $x_{0}$ in $\mathbb{C}$ is $x_{0}$ itself.


## Projected gradient method

The projection operator $\operatorname{proj}_{\mathbb{C}}(\cdot)$ is an optimization problem by itself:

$$
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right)=\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

i.e., given a point $x_{0}$, find a point $x \in \mathbb{C}$ that is closest to $x_{0}$.


When $x_{0} \in \mathbb{C}$ :

- The closest point to $x_{0}$ in $\mathbb{C}$ is $x_{0}$ itself.

When $x_{0} \notin \mathbb{C}$ :

- The closest point to $x_{0}$ in $\mathbb{C}$ is is the point where the norm ball touches $\mathbb{C}$.


## Projected gradient method

Projected gradient method:

$$
x_{t+1}=\operatorname{proj}_{\mathbb{C}}\left(x_{t}-\eta \nabla f\left(x_{t}\right)\right)
$$



Note:

- PGD has one more step than GD: the projection.
- PGD is an "economic" algorithm if the problem is easy to solve.
- If $\mathbb{C}$ is a convex set, the projection has a unique solution; otherwise the solution may not be unique.
- Projected gradient method is a special case of proximal gradient method.

$$
\begin{aligned}
& \begin{array}{cl}
\text { Convergence of projected subgradient method } & \left\|g_{\tau}\right\| \leq G
\end{array} \begin{array}{l}
\text { Recall subgradient method: } \\
\begin{array}{ll}
y_{t+1}=x_{\tau}-\eta_{\tau} f(x) \\
x_{t+1}=q_{\tau}
\end{array}, \\
g_{t} \in 2 f\left(x_{c} j_{c}\left(y_{t+1}\right)\right.
\end{array} \\
& \left\|y_{t+1}-x^{*} \mid\right\|_{2}^{2}=\left\|x_{t}-\eta g_{t}-x^{*}\right\|_{2}^{2} \\
& =\left\|k_{e}-x^{*}\right\|_{2}^{2}-2 \eta\left(g_{e}, x_{e}-x^{*}\right)+q^{2}\left\|g_{e}\right\|_{2}^{2} \\
& \leq\left\|X_{t}-x^{*}\right\|_{2}^{2}-2 \eta\left(\underline{f\left(x_{e}\right)-f\left(x^{*}\right)}\right)+\eta^{2} G^{2} \\
& \text { - } f\left(x_{x}\right)-f\left(x^{*}\right) \leq \frac{1}{2 q}\left(\left\|x-x^{*}\right\|_{2}^{2}-\| \psi_{t+1}-x^{*} \eta_{2}^{2}\right)+\frac{1}{2} G^{2} \quad \varepsilon \sim \frac{1}{\sqrt{7}} \\
& \leq \frac{1}{2 \eta}\left(\left\|x_{t}-x^{2}\right\|^{2}-\left\|x_{=1}-x^{*}\right\|_{2}^{2}\right)+\frac{x}{2} G^{2}
\end{aligned}
$$

## Discussion

Comparing the convergence rates between GD and PG:

- For $f$ convex and Lipschitz continous, both GD and PGD converge $\mathcal{O}(1 / \sqrt{t})$.
- For $f$ convex and smooth, both GD and PGD converge $\mathcal{O}(1 / t)$.
- For $f$ strongly convex and smooth, both GD and PGD converge $\mathcal{O}\left(\rho^{t}\right)$. i.e., the theoretical convergence rate of PGD will be the same as that of GD.
(Projected)gradient method is only efficient if the projection step is cheap or simple.


## Thank you

Any questions?

## Credits

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

