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Admin

Reminder:

I Lectures on campus (Enginnering Bldg 2, Room 109) starting next week.

I Midterm exam on Monday 25 April.
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Smoothness

Recall �-smoothness:
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Smoothness

A bound on suboptimality of any point: if f is �-smooth,

1

2�
krf (x)k22  f (x)� f (x⇤) 

�

2
kx � x⇤k22
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Smoothness

Co-coercivity: for f �-smooth convex,

hrf (x)�rf (y), x � yi �
1

�
krf (x)�rf (y)k22
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Smoothness

Extension of co-coercivity: for f ↵-strongly convex and �-smooth,

hrf (x)�rf (y), x � yi �
↵�

↵+ �
kx � yk22 +

1

↵+ �
krf (x)�rf (y)k22

First, g(x) = f (x)� ↵
2 kxk

2
2 is (� � ↵)-smooth.
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Smoothness

Extension of co-coercivity (cont’d):
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Convergence of GD for smooth and strongly convex functions

(proof)
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Convergence of GD for smooth and strongly convex functions

(proof – cont’d)
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Summary
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Projected gradient method

So far we have seen unconstrained

optimization problems:

min
x2Rd

f (x)

I any x 2 Rn
can be a solution.

For constrained optimization problem:

min
x2C

f (x)

I now x must be in the set C.

GD is the standard way to solve the

unconstrained optimization problems.

xt+1 = xt � ⌘rf (xt)

Q: Can we apply GD to solve the

constrained optimization problem?

Idea: use projection!
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Projected gradient method

Step 1: Update xt by GD

yt+1 = xt � ⌘rf (xt)

Step 2: Project onto the set C

xt+1 = projC(yt+1)

If the updated point gets outside C, project
it back to the set.
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Projected gradient method

The projection operator projC(·) is an optimization problem by itself:

projC(x0) = argmin
x2C

1

2
kx � x0k

2
2

i.e., given a point x0, find a point x 2 C that is closest to x0.

When x0 2 C:
I The closest point to x0 in C is x0

itself.

When x0 /2 C:
I The closest point to x0 in C is is the

point where the norm ball touches C.
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Projected gradient method

Projected gradient method:

xt+1 = projC(xt � ⌘rf (xt))

Note:

I PGD has one more step than GD: the projection.

I PGD is an “economic” algorithm if the problem is easy to solve.

I If C is a convex set, the projection has a unique solution; otherwise the solution

may not be unique.

I Projected gradient method is a special case of proximal gradient method.
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Convergence of projected subgradient method

Recall subgradient method:

15 / 18

O xgek GY.I.tt0
HEHEmÉg É y

Teesta

Axe mi age xe xstjiig.li
ELENI Ites TEE a b

fuel fat Ke Mi
at fEIn

Ig He 114k IN XML TREE



Discussion

Comparing the convergence rates between GD and PG:

I For f convex and Lipschitz continous, both GD and PGD converge O(1/
p
t).

I For f convex and smooth, both GD and PGD converge O(1/t).

I For f strongly convex and smooth, both GD and PGD converge O(⇢t).

i.e., the theoretical convergence rate of PGD will be the same as that of GD.

Projected gradient method is only e�cient if the projection step is cheap or simple.
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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