CSED490Y: Optimization for Machine Learning
Week 07-1: Proximal gradient descent

Namhoon Lee

POSTECH

Spring 2022

1/12

Projected gradient method
Constrained minimization problems:

in f
min f(x)

2/12

Projected gradient method
Constrained minimization problems:

in f
e

Projected gradient method:

Xt4+1 = projc(xe — nVF(xt))
e

where projc(+) is the projection operation defined as

) 1
projc(xo) = arg min §||x — ong

— xeC -

2/12

Projected gradient method
Constrained minimization problems:

inf
min f(x)

Projected gradient method:

Xe+1 = proje(xe — NV (xt))
where projc(+) is the projection operation defined as

) 1
projc(xo) = arg min §||x — XoH%
xeC

> Same convergence rates as gradient method; e.g. O(1/€?) for convex and
Lipschitz continuous functions.

2/12

Projected gradient method

An equivalent formulation to constrained minimization:

[—
i = in f(x) + Z,
* min f(x) min ‘X) c(x)

where Z¢ is an indicator function

0 ifxeC -
T =
o ifx¢gC -

which is simple to evaluate and convex if C is convex (but not smooth).

3/12

Projected gradient method

An equivalent formulation to constrained minimization:

)r(nei(g flx) = mXin f(x) + Zc(x)

where Z¢ is an indicator function

0 ifxeC
T =
oo ifx¢C

which is simple to evaluate and convex if C is convex (but not smooth).

This penalty form can be applied to the projection operator, i.e.

) 1
projc(xg) = argmin §HX — xoll3
xeC

1 >
= arg min EHX—X0||2 + Zc(x) V/

X

—)

3/12

Composite functions

Consider f as a composite function of g and h:

F(x) = g(x) + h(x)

» g is convex and differentiable.

» his convex, but not necessarily differentiable.

4/12

Composite functions

Consider f as a composite function of g and h:

f(x) = g(x) + h(x)
+ - G- (ngah’rffl—

» g is convex and differentiable. S‘*"j"""! conesyed
» his convex, but not necessarily differentiable. ol ({FF7 — c’(VT)

If £ were differentiable we could apply gradient descent; yet only g is differentiable.
» Subgradient method? Can we could do better?

4/12

Interpretation for proximal gradient

Recall that the gradient descent algorithm can be interpreted as minimizing a
quadratic approximation:

. 1
Xer1 = argmin f(x) = f(xt) + (VF(xt), x — x¢) + —||x — XtH%

i.e., taking derivative and solving it w.r.t. x will give gradient descent.

5/12

Interpretation for proximal gradient

Recall that the gradient descent algorithm can be interpreted as minimizing a
quadratic approximation:

. 1
Xer1 = argmin f(x) = f(x¢) + (VF(xt), x — x¢) + %HX - XtH%

i.e., taking derivative and solving it w.r.t. x will give gradient descent.
We can do the same for g in the composite function, i.e.

xT = argmin f(x) =~ g(x) + h(x)

_argmlng(y)+< (y),X—Y> _|‘X_Y||2+h()

= arg mm@,llx— y —nVel(y |f§+ h(x)
u—é
—

6/

5/12

Interpretation for proximal gradient x'= PoCy = 0‘\7;/\% —iﬂx—whl—r,’[ix) ¢

Recall that the gradient descent algorithm can be interpreted as minimizing a
quadratic approximation:

. 1
Xer1 = argmin f(x) = f(x¢) + (VF(xt), x — x¢) + %HX - XtH%

i.e., taking derivative and solving it w.r.t. x will give gradient descent.
We can do the same for g in the composite function, i.e.
xT = argmin f(x) =~ g(x) + h(x)
X

. 1
=argming(y) + (Vg(y),x —y) + %HX — yll3 + h(x)

1
= argmin 7 [lx — (y —nVely)z + h(x)

—

This resembles the projection operator except that we now have h(x) instead of Z¢(x).
5/12

Proximal operator

|dea: generalize Z to other (convex) functions other than just indicator function.

6/12

Proximal operator

|dea: generalize Z to other (convex) functions other than just indicator function.

In general, the proximal operator can be written as follows:
.1 5
prox,(y) = argmin < |x — y||5 + h(x)
= x 2

i.e., given (try to find x that minimizes h(x), but also don't go too far from y.

6/12

Proximal operator

|dea: generalize Z to other (convex) functions other than just indicator function.

In general, the proximal operator can be written as follows:
.1 5
prox(y) = arg min §||X —yll2+ h(x)
X

i.e., given y try to find x that minimizes h(x), but also don't go too far from y.

A modification: 1
rov(y) = argmin 5l =y + i)

» 7 small: 1st term explodes, stay close to y (small step size).

» 7 large: 1st term vanishes, minimize h is what you care (big step size).

6/12

Proximal operator evquivalence

From

1
proxy(y) = arg min = |x = y | + h(x)

Update h to nh

1
prox,n(y) = arg min 5 x - y|I3 + nh(x)

_ 1
— srgminyy{(5_Ix — yI + h(x))

1 5
= arg min —||x — + h(x
gmin 5 lx [} + h(x)

7/12

Example of prox operator L/ Oe ‘ZL(/(—V/-\-M//

For h(x) = ||x||1, the proximal operator becomes v 2 (il = {‘l Y<o
1 tD Xj=e
(x7) = prox,(®) = arg min —|x — y[13 + x| o %o
— x Ui nr—f;
where x™ is “soft-threshold”-ed y \//

yi+n fory < -—n —
¥ =40 for |yi| <n (

yi—n foryi>n.

(sol'n) Use the prox operator definition and suboptimality condition for subgradient.

8/12

Example of prox operator

For h(x) = ||x||1, the proximal operator becomes

1
x* = prox,,(y) = arg min il vl + [l

X

where x™ is “soft-threshold”-ed y
yi+n fory, <—ng i
XTixi =140 for |yil <n
yi—n foryj>mn.

(sol'n) Use the prox operator definition and suboptimality condition for subgradient.

f/%{‘f - 7‘/’}?;/-%{7 7

Exercise: pr0}<€((37 —0.7,-2)") = (2,0, -1).
L=

8/12

Proximal gradient method
‘7-{-.1 = Xe ’ZV’%@)
xt*l = 'thjdfiw%*’)

e kq‘FrI

Xt4+1 = prOth('Xt - an(Xt))

Proximal gradient:

1
= argmin - |[x — (xe — nVg(x)) I3 + h(x)

X 77 e

» If his indicator function, the proximal gradient is the same as the projected
gradient.

9/12

Gradient mapping

Define gradient mapping:

6(x) = = (x = proxyu(x — V()

Then we can rewrite the proximal gradient method into something that looks more like
a gradient descent update step:

Xt+1 = Xt — T/Gn(Xt) .

» G, is called the gradient map of proximal gradient method, and we treat this as if
it's a gradient, but G, is not a (sub)gradient of f in general.

» We do this to make analyzing convergence behavior easier.

10/12

Any questions?

11/12

Credits

A lot of material in this course is borrowed or derived from the following:
» Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Convex Optimization, Ryan Tibshirani.

>
>
» Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
» Optimization Algorithms, Constantine Caramanis.

>

Advanced Machine Learning, Mark Schmidt.

12/12

