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Projected gradient method

Constrained minimization problems:

min
x2C

f (x)

Projected gradient method:

xt+1 = projC(xt � ⌘rf (xt))

where projC(·) is the projection operation defined as

projC(x0) = argmin
x2C

1

2
kx � x0k

2
2

I Same convergence rates as gradient method; e.g. O(1/✏2) for convex and

Lipschitz continuous functions.
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Projected gradient method

An equivalent formulation to constrained minimization:

min
x2C

f (x) ⌘ min
x

f (x) + IC(x)

where IC is an indicator function

IC =

(
0 if x 2 C
1 if x /2 C

which is simple to evaluate and convex if C is convex (but not smooth).

This penalty form can be applied to the projection operator, i.e.

projC(x0) = argmin
x2C

1

2
kx � x0k

2
2

= argmin
x

1

2
kx � x0k

2
2 + IC(x)
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Composite functions

Consider f as a composite function of g and h:

f (x) = g(x) + h(x)

I g is convex and di↵erentiable.

I h is convex, but not necessarily di↵erentiable.

If f were di↵erentiable we could apply gradient descent; yet only g is di↵erentiable.

I Subgradient method? Can we could do better?
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Interpretation for proximal gradient

Recall that the gradient descent algorithm can be interpreted as minimizing a

quadratic approximation:

xt+1 = argmin
x

f (x) ⇡ f (xt) + hrf (xt), x � xti+
1

2⌘
kx � xtk

2
2

i.e., taking derivative and solving it w.r.t. x will give gradient descent.

We can do the same for g in the composite function, i.e.

x+ = argmin
x

f (x) ⇡ g̃(x) + h(x)

= argmin
x

g(y) + hrg(y), x � yi+
1

2⌘
kx � yk22 + h(x)

= argmin
x

1

2⌘
kx � (y � ⌘rg(y))k22 + h(x)

This resembles the projection operator except that we now have h(x) instead of IC(x).
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Proximal operator

Idea: generalize I to other (convex) functions other than just indicator function.

In general, the proximal operator can be written as follows:

proxh(y) = argmin
x

1

2
kx � yk22 + h(x)

i.e., given y try to find x that minimizes h(x), but also don’t go too far from y .

A modification:

prox⌘h(y) = argmin
x

1

2⌘
kx � yk22 + h(x)

I ⌘ small: 1st term explodes, stay close to y (small step size).

I ⌘ large: 1st term vanishes, minimize h is what you care (big step size).
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Proximal operator evquivalence

From

proxh(y) = argmin
x

1

2
kx � yk22 + h(x)

Update h to ⌘h

prox⌘h(y) = argmin
x

1

2
kx � yk22 + ⌘h(x)

= argmin
x

⌘
⇣
1

2⌘
kx � yk22 + h(x)

⌘

= argmin
x

1

2⌘
kx � yk22 + h(x)
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Example of prox operator

For h(x) = kxk1, the proximal operator becomes

x+ = prox⌘h(y) = argmin
x

1

2⌘
kx � yk22 + kxk1

where x+ is “soft-threshold”-ed y

x+ : xi =

8
><

>:

yi + ⌘ for yi < �⌘

0 for |yi |  ⌘

yi � ⌘ for yi > ⌘ .

(sol’n) Use the prox operator definition and suboptimality condition for subgradient.

Exercise: proxh((3,�0.7,�2)
>
) = (2, 0,�1).
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Proximal gradient method

Proximal gradient:

xt+1 = prox⌘h(xt � ⌘rg(xt))

= argmin
x

1

2⌘
kx � (xt � ⌘rg(xt))k

2
2 + h(x) .

I If h is indicator function, the proximal gradient is the same as the projected

gradient.
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Gradient mapping

Define gradient mapping:

G⌘(x) =
1

⌘
(x � prox⌘h(x � ⌘rg(x))) .

Then we can rewrite the proximal gradient method into something that looks more like

a gradient descent update step:

xt+1 = xt � ⌘G⌘(xt) .

I G⌘ is called the gradient map of proximal gradient method, and we treat this as if

it’s a gradient, but G⌘ is not a (sub)gradient of f in general.

I We do this to make analyzing convergence behavior easier.
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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