CSED490Y: Optimization for Machine Learning

 Week 07-1: Proximal gradient descentNamhoon Lee
POSTECH
Spring 2022

Projected gradient method

Constrained minimization problems:

$$
\min _{x \in \mathbb{C}} f(x)
$$

Projected gradient method

Constrained minimization problems:

$$
\min _{x \in \mathbb{C}} f(x)
$$

Projected gradient method:

$$
x_{t+1}=\operatorname{proj}_{\mathbb{C}}(\underbrace{x_{t}-\eta \nabla f\left(x_{t}\right.}))
$$

where $\operatorname{proj}_{\mathbb{C}}(\cdot)$ is the projection operation defined as

$$
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right)=\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

Projected gradient method

Constrained minimization problems:

$$
\min _{x \in \mathbb{C}} f(x)
$$

Projected gradient method:

$$
x_{t+1}=\operatorname{proj}_{\mathbb{C}}\left(x_{t}-\eta \nabla f\left(x_{t}\right)\right)
$$

where $\operatorname{proj}_{\mathbb{C}}(\cdot)$ is the projection operation defined as

$$
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right)=\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

- Same convergence rates as gradient method; e.g. $\mathcal{O}\left(1 / \epsilon^{2}\right)$ for convex and Lipschitz continuous functions.

Projected gradient method

An equivalent formulation to constrained minimization:

$$
\min _{x \in \mathbb{C}} f(x) \equiv \min _{x \in \mathbb{C}} f(x)+\mathcal{I}_{\mathbb{C}}(x)
$$

where $\mathcal{I}_{\mathbb{C}}$ is an indicator function

$$
\mathcal{I}_{\mathbb{C}}= \begin{cases}0 & \text { if } x \in \mathbb{C} \\ \infty & \text { if } x \notin \mathbb{C} .\end{cases}
$$

which is simple to evaluate and convex if \mathbb{C} is convex (but not smooth).

Projected gradient method

An equivalent formulation to constrained minimization:

$$
\min _{x \in \mathbb{C}} f(x) \equiv \min _{x} f(x)+\mathcal{I}_{\mathbb{C}}(x)
$$

where $\mathcal{I}_{\mathbb{C}}$ is an indicator function

$$
\mathcal{I}_{\mathbb{C}}= \begin{cases}0 & \text { if } x \in \mathbb{C} \\ \infty & \text { if } x \notin \mathbb{C}\end{cases}
$$

which is simple to evaluate and convex if \mathbb{C} is convex (but not smooth).

This penalty form can be applied to the projection operator, i.e.

$$
\begin{aligned}
\operatorname{proj}_{\mathbb{C}}\left(x_{0}\right) & =\underset{x \in \mathbb{C}}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2} \\
& =\underset{x}{\arg \min } \frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}+\underbrace{\mathcal{I}(x)}_{\mathbb{C}}
\end{aligned}
$$

Composite functions

Consider f as a composite function of g and h :

$$
f(x)=g(x)+h(x)
$$

- g is convex and differentiable.
- h is convex, but not necessarily differentiable.

Composite functions

Consider f as a composite function of g and h :

$$
f(x)=g(x)+h(x)
$$

- g is convex and differentiable.
- h is convex, but not necessarily differentiable.

If f were differentiable we could apply gradient descent; yet only g is differentiable.

- Subgradient method? Can we could do better?

Interpretation for proximal gradient

Recall that the gradient descent algorithm can be interpreted as minimizing a quadratic approximation:

$$
x_{t+1}=\underset{x}{\arg \min } f(x) \approx \underbrace{f\left(x_{t}\right)+\left\langle\nabla f\left(x_{t}\right), x-x_{t}\right\rangle}+\frac{1}{2 \eta}\left\|x-x_{t}\right\|_{2}^{2}
$$

i.e., taking derivative and solving it w.r.t. x will give gradient descent.

Interpretation for proximal gradient

Recall that the gradient descent algorithm can be interpreted as minimizing a quadratic approximation:

$$
x_{t+1}=\underset{x}{\arg \min } f(x) \approx f\left(x_{t}\right)+\left\langle\nabla f\left(x_{t}\right), x-x_{t}\right\rangle+\frac{1}{2 \eta}\left\|x-x_{t}\right\|_{2}^{2}
$$

i.e., taking derivative and solving it w.r.t. x will give gradient descent.

We can do the same for g in the composite function, i.e.

$$
\begin{aligned}
x^{+} & =\underset{x}{\arg \min } \underline{f(x)} \approx \tilde{g}(x)+h(x) \\
& =\underset{x}{\arg \min } \underbrace{g(y)+\langle\nabla g(y), x-y\rangle+\frac{1}{2 \eta}\|x-y\|_{2}^{2}}+h(x) \\
& =\underset{\sim}{\arg \min } \frac{1}{2 \eta}\|x-(y-\eta \nabla g(y))\|_{2}^{2}+h(x)
\end{aligned}
$$

Interpretation for proximal gradient $x^{\dagger}=p r \sigma_{e}(y)=\operatorname{argmin} \frac{1}{2}\|x-y\|_{c}^{2}+I_{c}(x)$

Recall that the gradient descent algorithm can be interpreted as minimizing a quadratic approximation:

$$
x_{t+1}=\underset{x}{\arg \min } f(x) \approx f\left(x_{t}\right)+\left\langle\nabla f\left(x_{t}\right), x-x_{t}\right\rangle+\frac{1}{2 \eta}\left\|x-x_{t}\right\|_{2}^{2}
$$

i.e., taking derivative and solving it w.r.t. x will give gradient descent.

We can do the same for g in the composite function, i.e.

$$
\begin{aligned}
x^{+} & =\underset{x}{\arg \min } f(x) \approx \tilde{g}(x)+h(x) \\
& =\underset{x}{\arg \min } g(y)+\langle\nabla g(y), x-y\rangle+\frac{1}{2 \eta}\|x-y\|_{2}^{2}+h(x) \\
& =\underset{x}{\arg \min } \frac{1}{2 \eta}\|x-(\underbrace{y-\eta \nabla g(y)})\|_{2}^{2}+h(x)
\end{aligned}
$$

This resembles the projection operator except that we now have $h(x)$ instead of $\mathcal{I}_{\mathbb{C}}(x)$.

Proximal operator

Idea: generalize \mathcal{I} to other (convex) functions other than just indicator function.

Proximal operator

Idea: generalize \mathcal{I} to other (convex) functions other than just indicator function.
In general, the proximal operator can be written as follows:

$$
\operatorname{prox}_{h}(y)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+h(x)
$$

i.e., given (y) try to find x that minimizes $h(x)$, but also don't go too far from y.

Proximal operator

Idea: generalize \mathcal{I} to other (convex) functions other than just indicator function.
In general, the proximal operator can be written as follows:

$$
\operatorname{prox}_{h}(y)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+h(x)
$$

i.e., given y try to find x that minimizes $h(x)$, but also don't go too far from y.

A modification:

$$
\operatorname{prox}_{\eta h}(y)=\underset{x}{\arg \min } \frac{1}{2 \emptyset}\|x-y\|_{2}^{2}+h(x)
$$

- η small: 1st term explodes, stay close to y (small step size).
- η large: 1st term vanishes, minimize h is what you care (big step size).

Proximal operator evquivalence

From

$$
\operatorname{prox}_{h}(y)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+h(x)
$$

Update \underline{h} to $\underline{\eta} h$

$$
\begin{aligned}
\operatorname{prox}_{\eta h}(y) & =\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\eta h(x) \\
& =\underset{x}{\arg \min } \eta\left(\frac{1}{2 \eta}\|x-y\|_{2}^{2}+h(x)\right) \\
& =\underset{x}{\arg \min } \frac{1}{2 \eta}\|x-y\|_{2}^{2}+h(x)
\end{aligned}
$$

Example of prox operator

For $h(x)=\|x\|_{1}$, the proximal operator becomes

$$
\left.x^{\ominus}\right)=\underbrace{\operatorname{prox}_{\eta h}(\hat{y})})=\underbrace{\arg \min }_{x} \frac{1}{2 \eta}\|x-y\|_{2}^{2}+\left\|_{x}\right\|_{1}
$$

where x^{+}is "soft-threshold"-ed y

$$
\underline{x^{+}}: x_{i}= \begin{cases}y_{i}+\eta & \text { for } y_{i}<-\eta \\ 0 & \text { for }\left|y_{i}\right| \leq \eta \\ y_{i}-\eta & \text { for } y_{i}>\eta\end{cases}
$$

(sol'n) Use the prox operator definition and suboptimality condition for subgradient.

Example of prox operator

For $h(x)=\|x\|_{1}$, the proximal operator becomes

$$
x^{+}=\operatorname{prox}_{\eta h}(y)=\underset{x}{\arg \min } \frac{1}{2 \eta}\|x-y\|_{2}^{2}+\|x\|_{1}
$$

where x^{+}is "soft-threshold"-ed y

$$
x^{+}: x_{i}= \begin{cases}y_{i}+\eta & \text { for } y_{i}<-\eta \\ 0 & \text { for }\left|y_{i}\right| \leq \eta \\ y_{i}-\eta & \text { for } y_{i}>\eta\end{cases}
$$

(sol'n) Use the prox operator definition and suboptimality condition for subgradient.

Exercise: $\operatorname{prox}_{\boldsymbol{L}}\left((3,-0.7,-2)^{\top}\right)=(\underbrace{(2,0,-1)}$.
 $\eta=1$

Proximal gradient method

$$
\begin{aligned}
& y_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right) \\
& x_{t+1}=\operatorname{pro}_{\mathbb{C}}\left(y_{t+1}\right)
\end{aligned}
$$

Proximal gradient:

$$
\begin{aligned}
x_{t+1} & =\operatorname{prox}_{\eta h}\left(x_{t}-\eta \nabla g\left(x_{t}\right)\right) \\
& =\underset{x}{\arg \min } \frac{1}{2 \eta} \| x-(\underbrace{x_{t}-\eta \nabla g\left(x_{t}\right.}_{y_{t-1}})) \|_{2}^{2}+h(x) .
\end{aligned}
$$

- If h is indicator function, the proximal gradient is the same as the projected gradient.

Gradient mapping

Define gradient mapping:

$$
G_{\eta}(x)=\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta h}(x-\eta \nabla g(x))\right)
$$

Then we can rewrite the proximal gradient method into something that looks more like a gradient descent update step:

$$
x_{t+1}=x_{t}-\eta G_{\eta}\left(x_{t}\right)
$$

- G_{η} is called the gradient map of proximal gradient method, and we treat this as if it's a gradient, but G_{η} is not a (sub)gradient of f in general.
- We do this to make analyzing convergence behavior easier.

Thank you

Any questions?

Credits

A lot of material in this course is borrowed or derived from the following:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe.
- Convex Optimization, Ryan Tibshirani.
- Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
- Optimization Algorithms, Constantine Caramanis.
- Advanced Machine Learning, Mark Schmidt.

