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Admin

(NEW) Midway group presentation

I Present a research paper that is most relevant to your project.

I Explain how this paper is related to your idea.

Logistics

I Time: 15 minutes

I Date: Choose either {11, 18, 25} of May – sign up here by this week

I Scores: 5% – it replaces one of two remaining quizzes
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https://docs.google.com/spreadsheets/d/17yLy0gAO9ncRpUIPP6QEdOf2MgqQqrreWhcb5EMpL9c/edit?usp=sharing


Stochastic gradient descent

So far we have been assuming that we have access to the gradient rf (x). For example,

(GD) xt+1 = xt � ⌘rf (xt)

for which we call “oracle” for the gradient at any point x to perform GD.

In practice, we may not have access to the full gradient (i.e., stochastic oracle).

I Gradient is noisy or inexact.

I Gradient is too expensive to compute.
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Stochastic gradient descent

In stochastic setting, we assume that the gradient that oracle returns is not exact but

only the expected value of it is.

A stochastic oracle for a di↵erentiable function f takes as input a vector x 2 Rd
and

outputs a random vector g 2 Rd
such that

E[g ] = rf (x)

where the expectation is taken with respect to the randomization of the oracle.

We say that the oracle is an unbiased estimator of the true gradient.
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Examples

Random coordinate optimization

I Randomly sample a coordinate and update the corresponding variable at a time.

xt+1 = xt � ⌘rit f (xt)eit

where rit f (xt) =
@f
@xit

(xt), and eit represents the it-th standard unit vector, i.e.,

e jit = 0 if j 6= i and e jit = 1 otherwise.

I can be faster than gradient descent if iterations are d times cheaper.
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Examples

Finite sum optimization

I f (x) is given as the sum of many terms.

f (x) =
1

n

nX

i=1

fi (x)

I Many machine learning problems fall into this category, e.g., least squares:

f (x) =
1

n
kAx � bk22 =

1

n

nX

i=1

(a>i x � bi )
2
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Empirical risk minimization

In machine learning, we wish to minimize the expected risk

min
x

E⇠

⇥
f (x ; ⇠)

⇤

but typically the distribution over ⇠ is unknown.

So instead we minimize the empirical risk

min
x

f (x) =
1

n

nX

i

fi (x)

hoping that n data (i.e. training data) may represent the distribution.
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Deterministic vs Stochastic methods

Given a finite sum f (x) = 1
n

Pn
i=1 fi (x),

Deterministic gradient method:

xt+1 = xt � ⌘rf (xt) = xt � ⌘r

 
1

n

nX

i=1

fi (xt)

!
= xt �

⌘

n

nX

i=1

rfi (xt)

I The cost of each update step is proportional to n; if n is large (a lot of data),

performing GD can be very expensive.

I We know that this method converges with a fixed step size ⌘.
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Deterministic vs Stochastic methods

Given a finite sum f (x) = 1
n

Pn
i=1 fi (x),

Stochastic gradient method:

xt+1 = xt � ⌘rfit (xt)

where it = {1, 2, ..., n} is selected uniformly at random.

I The cost of each update is independent of n.

I The stochastic gradient is indeed an unbiased estimate of the full gradient; i.e.,
with p(it = i) = 1/n

E
⇥
rfit (x)

⇤
=

nX

i=1

p(it = i)rfi (x) =
nX

i=1

1

n
rfi (x) =

1

n

nX

i=1

rfi (x) = rf (x)

I This method requires a decreasing step size ⌘ ! 0 to converge.
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Deterministic vs Stochastic methods

Illustrating determinstic vs stochastic methods (level sets)
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Deterministic vs Stochastic methods

Illustrating determinstic vs stochastic methods (linear regression)
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Deterministic vs Stochastic methods

Comparing determinstic vs stochastic methods in convergence rate

For non-smooth case, the convergence rates are the same.

I O(1/
p
t) for convex

I O(1/t) for strongly convex (not proved in the class)

I Same rate as deterministic method, but n times faster.

For smooth case, stochastic method is slower.

I O(1/
p
t) for convex (whereas for deterministic O(1/t))

I O(1/t) for strongly convex (whereas for deterministic O(⇢t))

I Even momentum methods do not improve this rate in stochastic setting.
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Convergence rate

Convergence rate proof for non-smooth case (1/2)
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Convergence rate

Convergence rate proof for non-smooth case (2/2)
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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