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Week 08: Stochastic gradient descent
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Admin

(NEW) Midway group presentation
» Present a research paper that is most relevant to your project.

» Explain how this paper is related to your idea.

Logistics
» Time: 15 minutes
» Date: Choose either {11,18,25} of May — sign up here by this week

» Scores: 5% — it replaces one of two remaining quizzes

2/16


https://docs.google.com/spreadsheets/d/17yLy0gAO9ncRpUIPP6QEdOf2MgqQqrreWhcb5EMpL9c/edit?usp=sharing

Stochastic gradient descent
M ftx)
<
So far we have been assuming that we have access to the gradient Vf(x). For example,

(GD) Xer1 = X — NV (x¢)

for which we call “oracle” for the gradient at any point x to perform GD.
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Stochastic gradient descent

So far we have been assuming that we have access to the gradient Vf(x). For example,
(GD) Xer1 = X — NV (x¢)
for which we call “oracle” for the gradient at any point x to perform GD.

In practice, we may not have access to the full gradient (i.e., stochastic oracle).
» Gradient is noisy or inexact.

» Gradient is too expensive to compute.
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Stochastic gradient descent

In stochastic setting, we assume that the gradient that oracle returns is not exact but
only the expected value of it is.
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Stochastic gradient descent

In stochastic setting, we assume that the gradient that oracle returns is not exact but
only the expected value of it is.

A stochastic oracle for a differentiable function f takes as input a vector x € R? and
outputs a random vector g € RY such that

Elg] = Vf(x)
where the expectation is taken with respect to the randomization of the oracle.

We say that the oracle is an unbiased estimator of the true gradient.
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Examples

d
L€ (1 -
roo
Tz ), d /-7
Random coordinate optimization /I § 1 )) l N

» Randomly sample a coordinate and update the corresponding variable at a time.
xt+1 = Xt — NV f(xt)e;,

where V. f(x¢) = %(xt), and ej, represents the i;-th standard unit vector, i.e.,
el =0if j#iand e =1 otherwise.
t t

» can be faster than gradient descent if iterations are d times cheaper.
o) o)
: D G0
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Examples

Finite sum optimization

» f(x) is given as the sum of many terms.
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Examples

Finite sum optimization

» f(x) is given as the sum of many terms.

» Many machine learning problems fall into this category, e.g., least squares:

1 1 <
f(x) = EIIAX —bl3 = - Z(a/TX — b;)?
"\Ké =1

AeR
h e xer®
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Empirical risk minimization

In machine learning, we wish to minimize the expected risk
min Ee [f(x;€)]

but typically the distribution over £ is unknown.
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Empirical risk minimization

In machine learning, we wish to minimize the expected risk
min Ee [f(x;€)]
but typically the distribution over £ is unknown.

So instead we minimize the empirical risk

mlnf Zf

hoping that n data (i.e. training data) may represent the distribution.
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Deterministic vs Stochastic methods

Given a finite sum f(x) = 3" fi(x),

" n

Deterministic gradient method:

Xt4+1 = Xt — an(Xt) =xt — NV (1 Z fi(Xt)> — Xt — % Z vfi(Xt)
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Deterministic vs Stochastic methods

Given a finite sum f(x) = 3" fi(x),

" n

Deterministic gradient method:

1 n n
Xt+1 = Xt — an(Xt) =Xt —nV (‘ Z fi(Xt)> = Xt — 1 Z Vf,-(xt)

n <
i=1

o(n?
» The cost of each update step is proportional to n; if n is large (a lot of data),
performing GD can be very expensive.

» We know that this method converges with a fixed step size 7.
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Deterministic vs Stochastic methods
Given a finite sum f(x) = 137 | £i(x), VfCke)
= 2
Stochastic gradient method: \/ P(zc _'/-) = ’T,
Xt4+1 = Xt — 77Vfit(Xt)

where iy = {1,2, ..., n} is selected uniformly at random.

—
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Deterministic vs Stochastic methods
Given a finite sum f(x) = 137 | £i(x),
Stochastic gradient method:
Xe41 = Xe — NV i (xt)

where iy = {1,2, ..., n} is selected uniformly at random.
> The cost of each update is independent of n. ~ O(f)

» The stochastic gradient is indeed an unbiased estimate of the full gradient; i.e.,
with p(ir =i)=1/n

Zp ir = NV fi(x Z ~Vfi(x %Zw,-(x) = Vf(x)
i=1
Y(MA«A v

» This method requires a decreasing step size n — 0 to converge.
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Deterministic vs Stochastic methods

lllustrating determinstic vs stochastic methods (level sets) U‘f
d~* (%)

D
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n
Deterministic vs Stochastic methods fox) = L f.u9
&

lllustrating determinstic vs stochastic methods (linear regression)

)(Cﬂ(élo)
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Deterministic vs Stochastic methods

Comparing determinstic vs stochastic methods in convergence rate
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Deterministic vs Stochastic methods

Comparing determinstic vs stochastic methods in convergence rate

For non-smooth case, the convergence rates are the same.
> O(1/V/t) for convex <=) € ~/ o( l/ff) X coxt sf /ﬂE’Q Foran
» O(1/t) for strongly convex (no’E’proved in the class) s / O
» Same rate as deterministic method, but n times faster. \

6C() o(n)
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Deterministic vs Stochastic methods

Comparing determinstic vs stochastic methods in convergence rate

For non-smooth case, the convergence rates are the same.
> O(1/+/t) for convex
» O(1/t) for strongly convex (not proved in the class)
» Same rate as deterministic method, but n times faster.

V‘F Liasdﬂ‘fk cx'fm.u-u) . T V{y _ 4
For smooth case, stochastic mepkod is slower. — | ~ 3
> O(1/+/t) fot convex (whereas for deterministic O(1/t))
» O(1/t) for strongly convex (whereas for deterministic O(p"))

» Even momentum methods do not improve this rate in stochastic setting.
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Convergence rate W-] . [ & ":': 613' viochmtfle ﬁa%ml%‘f
- e(1gn] =6

Convergence rate proof for non-smooth case (1/2) ‘L
(sc0)
r | 2 san) )éf(:
(| Xea=X"lh. = Il Xe "(,Jt - X"l <7\ = @t&
L ¢ = ” Xt"xr(':- }L <gt,/(('xr) + f[lJt”uk

€ (Mo =YW 1] = e KTy < e (1] Y0 + 7 €L 1E]
< voc)

- 2 (e-"]), - 1( o - foxm) q*E[/IJdL‘ '
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Convergence rate

&=t 155(1-., ﬁjn L J

Convergence rate proof for ncé{—’smooth case (2/2) v

ot~ (x

{-ﬂ'} y
E[ (e £ € (Uxe-v1i) 1 (% o fee9) + (LI 1]

e[He))-fa) = ;{z—(e[ﬂk —¥11]= €(Pea— K*‘II]) ., %&-

G bt SUas for T tlrefis, £ drvtde 5y T
E(Hdzke))-+F& < _%+ yg 5 oll=)
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Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:
» Numerical Optimization, Jorge Nocedal and Stephen J. Wright.
Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Convex Optimization, Ryan Tibshirani.

>
>
» Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.
» Optimization Algorithms, Constantine Caramanis.

>

Advanced Machine Learning, Mark Schmidt.
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