Introduction 000000	Intuition and Algorithm	Optimization Theory 00000000	Experiments 00000	Conclusion 00
Ordered SCD: A New Stochastic Optimization Framework				

for Empirical Risk Minimization (AISTATS 2020)

Kenji Kawaguchi¹ Haihao Lu²

¹MIT, ²Google Research

May 4, 2022

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00000	00

1 Introduction

- 2 Intuition and Algorithm
- **3** Optimization Theory

4 Experiments

5 Conclusion

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
●00000	000000	000000000	00000	00

Optimization Problem

Consider the Optimization problem for minimizing the average of loss function with regularizer, let $L(\theta)$,

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_i(\theta) + R(\theta)$$

where θ is the parameter vector of the parameterized model and $L_i's$ are loss of the *i*-th data sample, and $R(\theta) \ge 0$ is regularizer.

• We can use Gradient based methods which iteratively update the parameters as follows

$$\theta_{k+1} = \theta_k - \alpha \nabla L(\theta_k)$$

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
0●0000	000000	00000000	00000	00
Gradient Desc	rent			

 As we aleady know, the Gradient Descent method updates the parameter by using all the gradients of dataset

1 2 3 4 Dataset of size n n-1 n
$$\theta_{k+1} = \theta_k - \alpha \nabla \frac{1}{n} \sum_{i=1}^n L_i(\theta_k)$$

Introduction 00000	Intuition and Algorithm	Optimization Theory 00000000	Experiments 00000	Conclusion 00
Gradient D	escent			

As we aleady know, the Gradient Descent method updates the parameter by using all the gradients of dataset. i.e. full gradient

Computational expensive, inefficient

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00000	

Stochastic Gradient Descent

 To overcome the inefficiency, we devide the dataset to mini-batch and we replace the full gradient with mini-batch gradient(gradient estimator)

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000				

Stochastic Gradient Descent

Is this a reasonable method?

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000				

Stochastic Gradient Descent

Sure

SGD is a unbiased method

• Quite efficient and sometimes it is better than GD for use in DNN, which is non-convex.

Jinseok Chung (ML lab)

Introduction 000000	Intuition and Algorithm •00000	Optimization Theory 000000000	Experiments 00000	Conclusion 00
Intuition				

• When determining a decision boundary, there seem to be more impactful, helpful samples

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00000	00

Intuition

- Is uniform sampling always better?
- If not, how can we get better?
- Loss values indicate how violate from the answer.

Jinseok Chung (ML lab)

Introduction 000000	Intuition and Algorithm	Optimization Theory 00000000	Experiments 00000	Conclusion 00
Intuition				

• Let's use only top-q loss valued samples within a batch, instead of using all of a batch

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000			

Algorithm

Definition 1

Given a set of n real numbers (a_1, a_2, \cdots, a_n) , an index subset $S \subseteq \{1, 2, \cdots, n\}$, and a positive integer number $q \leq |S|$, we define q-argmax_{$j \in S$} a_j such that $Q \in q$ -argmax_{$j \in S$} a_j is a set of q indices of the q-largest values of $(a_j)_{j \in S}$; i.e., q-argmax_{$j \in S$} a_j = argmax_{$Q \subseteq S, |Q| = q$} $\sum_{i \in Q} a_i$

• For example, let $(a_1 = -5, a_2 = 10, a_3 = -4, a_4 = 6, a_5 = -1, a_6 = 5)$, if we want to know the 3 highest value indices of index subset $S = \{1, 2, 3, 4, 5\}$, find the 3 - argmaxset_{$j \in S$} $a_j = \{2, 4, 5\}$ In our case, It returns the top-q largest loss valued data indices. Then we can use only these data samples.

Introduction 000000	Intuition and Algorithm	Optimization Theory 000000000	Experiments 00000	Conclusion 00
Algorithm				

Algorithm 1 Ordered Stochastic Gradient Descent(OSGD)

Input : problem data L(x), step sizes sequence $(\alpha_k)_{k \in \mathbb{N} \cup \{0\}}$ and initialization θ_0

for k = 0, 1, ... do Sample a mini-batch uniformly: $S \subseteq \{1, 2, ..., n\}$ with |S| = sFind a set Q_k of top-q samples in S in term of loss values: $Q_k \in q$ -argmax $_{t \in S} L_t(\theta_k)$ Compute a gradient $\tilde{g}_k = \nabla_{\theta} L_{Q_k}(x_k)$ where $L_{\theta_k}(x_k) = \frac{1}{q} \sum_{t \in Q_k} L_t(\theta_k)$ Update parameter $\theta_{k+1} = \theta_k - \alpha_k \tilde{g}_k$ end for

Introduction 000000	Intuition and Algorithm	Optimization Theory 000000000	Experiments 00000	Conclusion
Algorithm				

• Notice that $\nabla_{\theta} L_{Q_k}$ is a biased gradient estimator

Jinseok Chung (ML lab)

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	•00000000	00000	

Toy examples

Figure 1: Decision boundaries of mini-batch SGD predictors (**top** row) and ordered SGD predictors (**bottom** row) with 2D synthetic datasets for binary classification. In these examples, ordered SGD predictors correctly classify more data points than mini-batch SGD predictors, because a ordered SGD predictor can focus more on a smaller yet informative subset of data points, instead of focusing on the average loss dominated by a larger subset of data points.

Jinseok Chung (ML lab)

Introduction 000000	Intuition and Algorithm 000000	Optimization Theory 0●0000000	Experiments 00000	Conclusion 00

Ordering notation

 Let's bring a notation similar to order statistics, but descending order. the notation of ordered indices : given a model parameter θ, let

 $L_{(1)}(\theta) \ge L_{(2)}(\theta) \ge \cdots \ge L_{(n)}(\theta)$

be the decreasing values of the individual losses $L_1(\theta), \dots, L_n(\theta)$, where $(j) \in \{1, \dots, n\}$. That is, $\{(1), \dots, (n)\}$ as a permutation of $\{1, \dots, n\}$ defines the order of sample indices by loss values.

• For example, let $L_1(\theta) = 1, L_2(\theta) = 10, L_3(\theta) = 2, L_4(\theta) = 6, L_5(\theta) = 3, L_6(\theta) = 5$, then we get the ordering notation by given θ , $L_{(6)}(\theta) = 1, L_{(1)}(\theta) = 10, L_{(5)}(\theta) = 2, L_{(2)}(\theta) = 6, L_{(4)}(\theta) = 3, L_{(3)}(\theta) = 5$

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	00000000	00000	00

What we actually optimized is

Theorem 1

Consider the following objective function:

$$L_q(\theta) := rac{1}{q} \sum_{t=1}^n \gamma_t L_{(t)}(\theta)$$

b where the parameter γ_t depends on the hyper parameter tuple (n,s,q), and is defined by

$$\gamma_t := \frac{\sum_{l=0}^{q-1} {\binom{t-1}{l} \binom{n-t}{s-l-1}}}{\binom{n}{s}}$$

Then, Ordered Stochastic Gradient Descent is a stochastic first-order method for minimizing $L_q(x)$ in sense that \tilde{g}_k is used in OSGD is an unbiased estimator of a gradient of $L_q(x)$.

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000		00000	00

Example

•
$$L_q(\theta) := \frac{1}{q} \sum_{t=1}^n \gamma_t L_{(t)}(\theta)$$
 where $\gamma_t := \frac{\sum_{l=0}^{q-1} {t-1 \choose l} {n-t \choose s-l-1}}{{n \choose s}}$

For the case of
$$(n=12, s=4, q=2)$$
,

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00000	

Take a close look

$$L_q(\theta) := \frac{1}{q} \sum_{t=1}^n \gamma_t L_{(t)}(\theta) = \sum_{t=1}^n \frac{\gamma_t}{q} L_{(t)}(\theta)$$

• For the case of (n=12, s=4, q=2),

$$\frac{1}{q}\gamma_1 = 0.1667 \quad \frac{1}{q}\gamma_2 = 0.1667 \quad \frac{1}{q}\gamma_3 = 0.1576 \quad \frac{1}{q}\gamma_4 = 0.1414 \quad \frac{1}{q}\gamma_5 = 0.1202 \quad \frac{1}{q}\gamma_6 = 0.0808$$
$$\frac{1}{q}\gamma_7 = 0.0707 \quad \frac{1}{q}\gamma_8 = 0.0464 \quad \frac{1}{q}\gamma_9 = 0.0253 \quad \frac{1}{q}\gamma_{10} = 0.0091 \quad \frac{1}{q}\gamma_{11} = 0 \quad \frac{1}{q}\gamma_{12} = 0$$
$$\sum_{t=1}^n \frac{\gamma_t}{q} = 1$$

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
	00000000		

Asymptotic behavior of the γ_t

Proposition 1

Denote
$$z = \frac{j}{n}$$
 and $\gamma(z) := \sum_{l=0}^{q-1} z^l (1-z)^{s-l-1} \frac{s!}{l!(s-l-1)!}$. Then it holds that
$$\lim_{j,n\to\infty} \gamma_j = \frac{1}{n} \gamma(z)$$

Moreover, it holds that
$$1 - \frac{1}{s}\gamma(z)$$
 is the cumulative distribution function of $Beta(z;q,s-q)$.

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00000	00

Asymptotic behavior of the γ_t

Figure 2: $\hat{\gamma}(z)$ and $\gamma(z)$ for different (n, s, q) where $\hat{\gamma}$ is a rescaled version of γ_j : $\hat{\gamma}(j/n) = n\gamma_j$.

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
	00000000		

Convergence Analysis

Theorem 2

Let $\{\theta_t\}_{t=0}^T$ be a sequence generated by ordered SGD (Algorithm1). Suppose that $L(\cdot)$ is G_1 -Lipschitz continuous for $i = 1, \cdots, n$, and $R(\cdot)$ is G_2 -Lipschitz continuous. Suppose that there exists a finite $\theta_{\star} \in \operatorname{argmin}_{\theta} L_q(\theta)$ and $L_q(\theta_{\star})$ is finite. Then, the following two statements hold:

1 (Convex setting). If $L_i(\cdot)$ and $R(\cdot)$ are both convex, for any step-size η_t , it holds that

$$\min_{0 \le t \le n} \mathbb{E}[L_q(\theta_t) - L_q(\theta_\star)] \le \frac{2(G_1^2 + G_2^2) \sum_{t=0}^T \eta_t^2 + ||\theta_\star - \theta_0||^2}{2 \sum_{t=0}^T \eta_t}$$

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
	00000000		

Convergence Analysis

Theorem 2

Let $\{\theta_t\}_{t=0}^T$ be a sequence generated by ordered SGD [Algorithm1]. Suppose that $L(\cdot)$ is G_1 -Lipschitz continuous for $i = 1, \cdots, n$, and $R(\cdot)$ is G_2 -Lipschitz continuous. Suppose that there exists a finite $\theta_{\star} \in \operatorname{argmin}_{\theta} L_q(\theta)$ and $L_q(\theta_{\star})$ is finite. Then, the following two statements hold:

1 (Convex setting). If $L_i(\cdot)$ and $R(\cdot)$ are both convex, for any step-size η_t , it holds that

if we choose
$$\eta_t \sim \mathcal{O}(\frac{1}{\sqrt{t}})$$
,
the optimality gap $\min_{0 \le t \le n} (L_q(\theta_t) - L_q(\theta_\star))$ decay at the rate of $\tilde{\mathcal{O}}(\frac{1}{\sqrt{t}})$

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	●0000	

Hyper-parameter setting

Basically, OSGD uses the adaptive q-value setting which the default setting: q=s at the beginning of training, $q = \lfloor \frac{s}{2} \rfloor$ once train $acc \ge 80\%$, $q = \lfloor \frac{s}{4} \rfloor$ once train $acc \ge 90\%$, $q = \lfloor \frac{s}{8} \rfloor$ once train $acc \ge 95\%$, and $q \lfloor \frac{s}{16} \rfloor$ once train $acc \ge 99.5\%$, where train acc represents training accuracy.

This rule was derived based on the intuition that in the early stage of training, all samples are informative to build a rough model, while the samples around the boundary (with larger losses) are more helpful to build the final classifier in later stage.

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
		0000	

Experimental results

Figure 3: Test error and training loss (in log scales) versus the number of epoch. These are without data augmentation in subfigures (a)-(d), and with data augmentation in subfigures (e)-(h). The lines indicate the mean values over 10 random trials, and the shaded regions represent intervals of the sample standard deviations.

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000	000000	000000000	00●00	00

Take a close look

- Model = PreActResNet18
- (n,s,q) = (50000, 64, 64 or 30 or adaptive)
- \blacksquare the initial LR = 0.01 and decay with some policy
- 10 trial each and averaged

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
		00000	

Wall-clock time

Data Aug	Datasets	Model	mini-batch SGD	ordered SGD	difference
No	Semeion	Logistic model	0.15(0.01)	0.15(0.01)	0.00
No	MNIST	Logistic model	7.16(0.27)	7.32(0.24)	-0.16
No	Semeion	$_{\rm SVM}$	0.17(0.01)	0.17(0.01)	0.00
No	MNIST	$_{\rm SVM}$	8.60(0.31)	8.72(0.29)	-0.12
No	Semeion	LeNet	0.18(0.01)	0.18(0.01)	0.00
No	MNIST	LeNet	9.00(0.34)	9.12(0.27)	-0.12
No	KMNIST	LeNet	9.23(0.33)	9.04~(0.55)	0.19
No	Fashion-MNIST	LeNet	8.56(0.48)	9.45~(0.31)	-0.90
No	CIFAR-10	$\operatorname{PreActResNet18}$	45.55(0.47)	43.72(0.93)	1.82
No	CIFAR-100	$\operatorname{PreActResNet18}$	46.83(0.90)	43.95(1.03)	2.89
No	SVHN	$\operatorname{PreActResNet18}$	71.95(1.40)	66.94(1.67)	5.01
Yes	Semeion	LeNet	0.28(0.02)	0.28(0.02)	0.00
Yes	MNIST	LeNet	14.44 (0.54)	14.77(0.41)	-0.32
Yes	KMNIST	LeNet	12.17(0.33)	11.42(0.29)	0.75
Yes	Fashion-MNIST	LeNet	12.23(0.40)	12.38(0.37)	-0.14
Yes	CIFAR-10	$\operatorname{PreActResNet18}$	48.18(0.58)	46.40(0.97)	1.78
Yes	CIFAR-100	$\operatorname{PreActResNet18}$	47.37 (0.84)	44.74 (0.91)	2.63
Yes	SVHN	PreActResNet18	72.29 (1.23)	67.95(1.54)	4.34

Table 4: Average wall-clock time (seconds) per epoch.

Introduction	Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
000000		00000000	0000●	00

Varying q-size

Jinseok Chung (ML lab)

Introduction 000000	Intuition and Algorithm 000000	Optimization Theory 00000000	Experiments 00000	Conclusion ●0
Conclusion				

 This purposely biased gradient estimator perform well not only empirical risk minimization but also perspective of generalization and computational efficiency

This variant of SGD also guaranteed to converge

Intuition and Algorithm	Optimization Theory	Experiments	Conclusion
			00

Thanks for your attention

proof of Theorem 1

Need to find the function that the \tilde{g}_k become an unbiased estimator for subgradient Taking expectation to \tilde{g}_k , it holds that

$$\mathbb{E}[\tilde{g}_k] = \frac{1}{q} \mathbb{E}[\sum_{i \in Q_k} g_i] = \frac{1}{q} \sum_{i=1}^n P(i \in Q_k) g_i = \frac{1}{q} \sum_{j=1}^n P((j) \in Q_k) g_{(j)}$$

Define index set $A_j = \{(1), (2), ..., (j-1)\}$, denote that given order is measured from whole n sample losses at current parameter x_k , then

1

$$\begin{split} P((j) \in Q) &= P((j) \in \operatorname{q-argmax}_{t \in S} L_t(x_k)) \\ &= P((j) \in S \text{ and } S \text{ contains at most q-1 items in } A_j) \\ &= P((j) \in S) P(S \text{ contains at most q-1 items in } A_j | (j) \in S) \\ &= P((j) \in S) \sum_{l=0}^{q-1} P(S \text{ contains } l \text{ items in } A_j | (j) \in S) \end{split}$$

Then there are $\binom{n}{s}$ different sets S s.t |S| = s and $\binom{n-1}{s-1}$ different sets S contains index (j). So $P((j) \in S) = \frac{\binom{n-1}{s-1}}{\binom{n}{s}}$.

And given the condition $(j) \in S$, let S contains l items in A_j which implies s - l - 1 items in $\{(j + 1), (j + 2), ..., (n)\}$. Then it holds that

$$P(S \text{ contains } l \text{ items in } A_j | (j) \in S) = \frac{\binom{j-1}{l}\binom{n-j}{s-l-1}}{\binom{n-1}{s-1}}$$

Therefore

$$P((j) \in Q_k) = \frac{\binom{n-1}{s-1}}{\binom{n}{s}} \sum_{l=0}^{q-1} \frac{\binom{j-1}{l}\binom{n-j}{s-l-1}}{\binom{n-1}{s-1}} = \frac{\sum_{l=0}^{q-1} \binom{j-1}{l}\binom{n-j}{s-l-1}}{\binom{n}{s}} =: \gamma_j$$

So the expectation of ordered gradient is

$$\mathbb{E}[\tilde{g}_k] = \frac{1}{q} \sum_{j=1}^n P((j) \in Q_k) g_{(j)} = \frac{1}{q} \sum_{j=1}^n \gamma_j g_{(j)}$$

which desired. Then the proof is done.