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Optimization Problem

Consider the Optimization problem for minimizing the average of loss function with
regularizer, let L(θ),

min
θ

1

n

n∑
i=1

Li(θ) +R(θ)

where θ is the parameter vector of the parameterized model and Li
′s are loss of the i-th

data sample, and R(θ) ≥ 0 is regularizer.

We can use Gradient based methods which iteratively update the parameters as follows

θk+1 = θk − α∇L(θk)
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Gradient Descent

As we aleady know, the Gradient Descent method updates the parameter by using all the
gradients of dataset

θk+1 = θk − α∇ 1

n

n∑
i=1

Li(θk)
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Gradient Descent

As we aleady know, the Gradient Descent method updates the parameter by using all the
gradients of dataset. i.e. full gradient

θk+1 = θk − α∇ 1

n

n∑
i=1

Li(θ)

Computational expensive, inefficient
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Stochastic Gradient Descent

To overcome the inefficiency, we devide the dataset to mini-batch and we replace the full
gradient with mini-batch gradient(gradient estimator)

θk+1 = θk − α∇1

s

s∑
i=1

Lsk+1(i)(θk)

Jinseok Chung (ML lab) Ordered SGD May 4, 2022 6 / 34



Introduction Intuition and Algorithm Optimization Theory Experiments Conclusion

Stochastic Gradient Descent

Is this a reasonable method?
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Stochastic Gradient Descent

Sure

SGD is a unbiased method

Quite efficient and sometimes it is better than GD for use in DNN, which is non-convex.
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Intuition

When determining a decision boundary, there seem to be more impactful, helpful samples
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Intuition

Is uniform sampling always better?

If not,how can we get better?

Loss values indicate how violate from the answer.
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Intuition

Let’s use only top-q loss valued samples within a batch, instead of using all of a batch
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Algorithm

Definition 1

Given a set of n real numbers (a1, a2, · · · , an), an index subset S ⊆ {1, 2, · · · , n}, and a
positive integer number q ≤ |S|,
we define q-argmaxj∈Saj such that Q ∈ q-argmaxj∈Saj is a set of q indices of the q-largest
values of (aj)j∈S ; i.e., q-argmaxj∈Saj = argmaxQ⊆S,|Q|=q

∑
i∈Q ai

For example, let (a1 = −5, a2 = 10, a3 = −4, a4 = 6, a5 = −1, a6 = 5),
if we want to know the 3 highest value indices of index subset S = {1, 2, 3, 4, 5},
find the 3− argmaxsetj∈Saj = {2, 4, 5}
In our case, It returns the top-q largest loss valued data indices. Then we can use only
these data samples.
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Algorithm

Algorithm 1 Ordered Stochastic Gradient Descent(OSGD)

Input : problem data L(x), step sizes sequence (αk)k∈N∪{0} and initialization θ0

for k = 0, 1, ... do
Sample a mini-batch uniformly: S ⊆ {1, 2, ..., n} with |S| = s
Find a set Qk of top-q samples in S in term of loss values: Qk ∈ q-argmaxt∈SLt(θk)
Compute a gradient g̃k = ∇θLQk

(xk) where Lθk(xk) =
1
q

∑
t∈Qk

Lt(θk)
Update parameter θk+1 = θk − αkg̃k

end for
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Algorithm

Notice that ∇θLQk
is a biased gradient estimator
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Toy examples
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Ordering notation

Let’s bring a notation similar to order statistics, but descending order.
the notation of ordered indices : given a model parameter θ, let

L(1)(θ) ≥ L(2)(θ) ≥ · · · ≥ L(n)(θ)

be the decreasing values of the individual losses L1(θ), · · · , Ln(θ), where
(j) ∈ {1, · · · , n}. That is, {(1), · · · , (n)} as a permutation of {1, · · · , n} defines the
order of sample indices by loss values.

For example, let L1(θ) = 1, L2(θ) = 10, L3(θ) = 2, L4(θ) = 6, L5(θ) = 3,L6(θ) = 5, then
we get the ordering notation by given θ,
L(6)(θ) = 1, L(1)(θ) = 10, L(5)(θ) = 2, L(2)(θ) = 6, L(4)(θ) = 3, L(3)(θ) = 5
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What we actually optimized is

Theorem 1

Consider the following objective function:

Lq(θ) :=
1

q

n∑
t=1

γtL(t)(θ)

b where the parameter γt depends on the hyper parameter tuple (n, s, q), and is defined by

γt :=

∑q−1
l=0

(
t−1
l

)(
n−t

s−l−1

)(
n
s

)
Then, Ordered Stochastic Gradient Descent is a stochastic first-order method for minimizing
Lq(x) in sense that g̃k is used in OSGD is an unbiased estimator of a gradient of Lq(x).
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Example

Lq(θ) :=
1
q

∑n
t=1 γtL(t)(θ) where γt :=

∑q−1
l=0 (

t−1
l )(

n−t
s−l−1)

(ns)

For the case of (n=12, s=4, q=2),

γ1 = 0.3333 γ2 = 0.3333 γ3 = 0.3152 γ4 = 0.2828 γ5 = 0.2404 γ6 = 0.1919

γ7 = 0.1414 γ8 = 0.0929 γ9 = 0.0505 γ10 = 0.0182 γ11 = 0 γ12 = 0
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Take a close look

Lq(θ) :=
1
q

∑n
t=1 γtL(t)(θ) =

∑n
t=1

γt
q L(t)(θ)

For the case of (n=12, s=4, q=2),

1

q
γ1 = 0.1667

1

q
γ2 = 0.1667

1

q
γ3 = 0.1576

1

q
γ4 = 0.1414

1

q
γ5 = 0.1202

1

q
γ6 = 0.0808

1

q
γ7 = 0.0707

1

q
γ8 = 0.0464

1

q
γ9 = 0.0253

1

q
γ10 = 0.0091

1

q
γ11 = 0

1

q
γ12 = 0

n∑
t=1

γt
q

= 1
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Asymptotic behavior of the γt

Proposition 1

Denote z = j
n and γ(z) :=

∑q−1
l=0 zl(1− z)s−l−1 s!

l!(s−l−1)! . Then it holds that

lim
j,n→∞

γj =
1

n
γ(z)

Moreover, it holds that 1− 1
sγ(z) is the cumulative distribution function of Beta(z; q, s− q).
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Asymptotic behavior of the γt
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Convergence Analysis

Theorem 2

Let {θt}Tt=0 be a sequence generated by ordered SGD (Algorithm1). Suppose that L(·) is
G1-Lipschitz continuous for i = 1,· · · ,n, and R(·) is G2-Lipschitz continuous. Suppose that
there exists a finite θ⋆ ∈ argminθLq(θ) and Lq(θ⋆) is finite. Then, the following two
statements hold:

1 (Convex setting). If Li(·) and R(·) are both convex, for any step-size ηt, it holds that

min
0≤t≤n

E[Lq(θt)− Lq(θ⋆)] ≤
2(G2

1 +G2
2)
∑T

t=0 η
2
t + ||θ⋆ − θ0||2

2
∑T

t=0 ηt
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Convergence Analysis

Theorem 2

Let {θt}Tt=0 be a sequence generated by ordered SGD [Algorithm1]. Suppose that L(·) is
G1-Lipschitz continuous for i = 1,· · · ,n, and R(·) is G2-Lipschitz continuous. Suppose that
there exists a finite θ⋆ ∈ argminθLq(θ) and Lq(θ⋆) is finite. Then, the following two
statements hold:

1 (Convex setting). If Li(·) and R(·) are both convex, for any step-size ηt, it holds that

if we choose ηt ∼ O(
1√
t
),

the optimality gap min
0≤t≤n

(Lq(θt)− Lq(θ⋆)) decay at the rate of Õ(
1√
t
)
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Hyper-parameter setting

Basically, OSGD uses the adaptive q-value setting which the default setting: q=s at the
beginning of training, q=⌊ s2⌋ once train acc≥ 80%, q=⌊ s4⌋ once train acc≥ 90%, q=⌊ s8⌋
once train acc≥ 95%, and q⌊ s

16⌋ once train acc≥ 99.5%, where train acc represents
training accuracy.

This rule was derived based on the intuition that in the early stage of training, all samples
are informative to build a rough model, while the samples around the boundary (with
larger losses) are more helpful to build the final classifier in later stage.
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Experimental results
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Take a close look

Model = PreActResNet18

(n,s,q) = (50000, 64, 64 or 30 or adaptive)

the initial LR = 0.01 and decay with some policy

10 trial each and averaged
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Wall-clock time

Jinseok Chung (ML lab) Ordered SGD May 4, 2022 27 / 34



Introduction Intuition and Algorithm Optimization Theory Experiments Conclusion

Varying q-size
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Conclusion

This purposely biased gradient estimator perform well not only empirical risk minimization
but also perspective of generalization and computational efficiency

This variant of SGD also guaranteed to converge
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Thanks for your attention
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Appendix

proof of Theorem 1

Need to find the function that the g̃k become an unbiased estimator for subgradient
Taking expectation to g̃k, it holds that

E[g̃k] =
1

q
E[

∑
i∈Qk

gi] =
1

q

n∑
i=1

P (i ∈ Qk)gi =
1

q

n∑
j=1

P ((j) ∈ Qk)g(j)

Define index set Aj = {(1), (2), ..., (j − 1)}, denote that given order is measured from
whole n sample losses at current parameter xk, then
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P ((j) ∈ Q) = P ((j) ∈ q-argmaxt∈SLt(xk))

= P ((j) ∈ S and S contains at most q-1 items in Aj)

= P ((j) ∈ S)P (S contains at most q-1 items in Aj |(j) ∈ S)

= P ((j) ∈ S)

q−1∑
l=0

P (S contains l items in Aj |(j) ∈ S)

Then there are
(
n
s

)
different sets S s.t |S| = s and

(
n−1
s−1

)
different sets S contains

index (j). So P ((j) ∈ S) =
(n−1
s−1)
(ns)

.
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And given the condition (j) ∈ S, let S contains l items in Aj which implies s− l − 1
items in {(j + 1), (j + 2), ..., (n)}. Then it holds that

P (S contains l items in Aj |(j) ∈ S) =

(
j−1
l

)(
n−j

s−l−1

)(
n−1
s−1

)
Therefore

P ((j) ∈ Qk) =

(
n−1
s−1

)(
n
s

) q−1∑
l=0

(
j−1
l

)(
n−j

s−l−1

)(
n−1
s−1

) =

∑q−1
l=0

(
j−1
l

)(
n−j

s−l−1

)(
n
s

) =: γj

So the expectation of ordered gradient is
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E[g̃k] =
1

q

n∑
j=1

P ((j) ∈ Qk)g(j) =
1

q

n∑
j=1

γjg(j)

which desired. Then the proof is done.
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