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Introduction
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Optimization Problem

m Consider the Optimization problem for minimizing the average of loss function with
regularizer, let L(6),

1
min — ; L;(0) + R(0)

where 0 is the parameter vector of the parameterized model and L;’s are loss of the i-th
data sample, and R(6) > 0 is regularizer.

m We can use Gradient based methods which iteratively update the parameters as follows
Op+1 = Op — aV L(0)
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Gradient Descent

m As we aleady know, the Gradient Descent method updates the parameter by using all the
gradients of dataset

1234 ™ N
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0k+1 = 9k - CKVE ; Lz(é?k)
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Gradient Descent

m As we aleady know, the Gradient Descent method updates the parameter by using all the
gradients of dataset. i.e. full gradient

1

2
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1 n
9k+1 = Hk - OzVE Z L,(@)

=1

m Computational expensive, inefficient
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Stochastic Gradient Descent

m To overcome the inefficiency, we devide the dataset to mini-batch and we replace the full
gradient with mini-batch gradient(gradient estimator)

l

(mini)batches S_k of size s

1 S
Ok =0k —aV_ 3 Ly (0h)
=1
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Stochastic Gradient Descent

m Is this a reasonable method?

1

S, S. (mini)batches S_k of size s Sra
l {
" / e,
A
8=89ls,  B:OLs,
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Stochastic Gradient Descent

m Sure

1

S, S;. (mini)batches S_k of size s Sl%q
l i
N \
v\th / \va . E |371__§‘] =v |

0=6sols,  erOls,

SGD is a unbiased method

m Quite efficient and sometimes it is better than GD for use in DNN, which is non-convex.
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Intuition

m When determining a decision boundary, there seem to be more impactful, helpful samples
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Intuition

m Is uniform sampling always better?
m If not,how can we get better?

m Loss values indicate how violate from the answer.
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Intuition

I

(mini)batches S_k of size s

Top-q samples Q_k from each batches

m Let's use only top-q loss valued samples within a batch, instead of using all of a batch
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Algorithm

Definition 1
Given a set of n real numbers (aj,as, - ,ay,), an index subset S C {1,2,--- ,n}, and a

positive integer number ¢ < |5,
we define g-argmax;cga; such that @ € g-argmax;cga; is a set of q indices of the g-largest

values of (a;)jes; i-e., g-argmax;cga; = argmaxqocs|Q=q 2icq %

m For example, let (a1 = —5,a2 = 10,a3 = —4,a4 = 6,a5 = —1,a6 = 5),
if we want to know the 3 highest value indices of index subset S = {1,2,3,4,5},

find the 3 — argmaxset;cga; = {2,4,5}
In our case, It returns the top-q largest loss valued data indices. Then we can use only

these data samples.
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Algorithm

Algorithm 1 Ordered Stochastic Gradient Descent(OSGD)
Input : problem data L(x), step sizes sequence (a)irenufo} and initialization 6
for k=0,1,... do
Sample a mini-batch uniformly: S C {1,2,...,n} with |S| = s
Find a set Q) of top-q samples in S in term of loss values: Q) € q-argmax;c gL (0))
Compute a gradient g, = VgLq, (x;) where Ly, (x1) = %Zter L(6k)
Update parameter 01 = 0 — argx;
end for
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Algorithm

l

S, Sa S S Ss Se
(mini)batches S_k of size s

1

Q. Qy Sy Gs
%La, <. %o %o Velos

Top-q samples Q_k from each batches

fl’

m Notice that VgL, is a biased gradient estimator
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1

x1

(a) with linear classifier (b) with linear classifier (c) with small ANN (d) with tiny ANN

Figure 1: Decision boundaries of mini-batch SGD predictors (top row) and ordered SGD predictors (bottom
row) with 2D synthetic datasets for binary classification. In these examples, ordered SGD predictors correctly
classify more data points than mini-batch SGD predictors, because a ordered SGD predictor can focus more on
a smaller yet informative subset of data points, instead of focusing on the average loss dominated by a larger
subset of data points.
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Ordering notation

m Let’s bring a notation similar to order statistics, but descending order.
the notation of ordered indices : given a model parameter 6, let

Ly(0) = Liy(0) = -+ = L) (0)

be the decreasing values of the individual losses L (0),- - , L, (), where
(j) € {1,--- ,n}. Thatis, {(1),---,(n)} as a permutation of {1,--- ,n} defines the
order of sample indices by loss values.

m For example, let L1(0) = 1, La(0) = 10, L3(6) = 2, L4(0) = 6, L5(0) = 3,Lg(0) = 5, then
we get the ordering notation by given 6,
L) (0) = 1,L1)(0) = 10, L5)(0) = 2, L2)(0) = 6, L(4)(0) = 3, L(3)(0) =5
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What we actually optimized is

Consider the following objective function:
1 n
Ly(0) := p > Ly ()
t=1

b where the parameter -, depends on the hyper parameter tuple (n, s, q), and is defined by

P =y ([ sy
()

Then, Ordered Stochastic Gradient Descent is a stochastic first-order method for minimizing
Ly(x) in sense that gy, is used in OSGD is an unbiased estimator of a gradient of L,(z).
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Example

m Ly(0) := %2?21 YLy (0) where ~; =
m For the case of (n=12, s=4, q=2),

v =0.3333 42 =0.3333 3 =0.3152 4 =0.2828 ~5=0.2404 ~6 = 0.1919
Y7 = 0.1414 YR = 0.0929 Yo = 0.0505 Y10 = 0.0182 Y11 = 0 Y12 = 0
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Take a close look

m Lg(8) = 5 o0 vl (0) = Simy 2Ly (6)

m For the case of (n=12, s=4, q=2),

1 1 1 1 1 1
5% = 0.1667 572 = 0.1667 gfyg = 0.1576 574 =0.1414 575 = 0.1202 6% = 0.0808

1 1 1 1 1 1
Y7 = 0.0707 -8 = 0.0464 —Y9 = 0.0253 —7Y10 = 0.0091 —Y11 = 0 —Y12 = 0
q q q q q q
n
>l
t=1 q
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Asymptotic behavior of the 7,

Denote z = £ and y(2) := 3207, 2(1 - )S_l_lu(s_s—l!_l)!. Then it holds that

. 1
lim ;= ~(2)

J,n—00

Moreover, it holds that 1 — %v(z) is the cumulative distribution function of Beta(z;q, s — q).

o
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Asymptotic behavior of the 7,

10 AR 100 —5()n =100 100
—3(2) :n =20 —4(2) s n = 200
8 A(z) :n =40 80 (2) : n = 400 80
—(2) —(z)
6 60 60
< < <
4 40 40 —A(2) : n = 100
—5(2) s n = 200
2 20 20 3(3) 400
—(2)
0 0- 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r4 z z
(a) (s,q) = (10,3) (b) (s, 9) = (100, 30) (c) (s,q) = (100,60)

Figure 2: 4(z) and (%) for different (n, s, q) where ¥ is a rescaled version of v;: ¥(j/n) = nv; .
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Convergence Analysis

Let {6;}, be a sequence generated by ordered SGD (Algorithm1). Suppose that L() is
G1-Lipschitz continuous for i = 1,---,n, and R(:) is Ga-Lipschitz continuous. Suppose that
there exists a finite 6, € argmingL4(0) and Ly(6,) is finite. Then, the following two
statements hold:

(Convex setting). If L;(-) and R(-) are both convex, for any step-size 7, it holds that

2(G2 2 T 2 0. — Onl|2
min E[Lq(gt) . Lq(g*)] S (Gl + GZ) Zt:gnt + || * 0||
ot 25 g
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Convergence Analysis

Let {0;}, be a sequence generated by ordered SGD [Algorithm1]. Suppose that L(-) is
G1-Lipschitz continuous for i = 1,---,n, and R(:) is Ga-Lipschitz continuous. Suppose that
there exists a finite 6, € argmingL,(6) and L,(6,) is finite. Then, the following two
statements hold:

(Convex setting). If L;(-) and R(-) are both convex, for any step-size 7, it holds that

1
if we choose 7, ~ O(—=),

Vit
1

the optimality gap 0r<rlti£ (Ly(6:) — Ly(6y)) decay at the rate of O(—=)
Stsn

<
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Hyper-parameter setting

m Basically, OSGD uses the adaptive g-value setting which the default setting: q=s at the
beginning of training, q=| 5| once train acc> 80%, q=| 7] once train acc> 90%, q=| ]
once train acc> 95%, and q|[ 15 once train acc> 99.5%, where train acc represents

training accuracy.

m This rule was derived based on the intuition that in the early stage of training, all samples
are informative to build a rough model, while the samples around the boundary (with
larger losses) are more helpful to build the final classifier in later stage.
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Experimental results

._ a mini-batch SGD
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Figure 3: Test error and training loss (in log scales) versus the number of epoch. These are without data
augmentation in subfigures (a)-(d), and with data augmentation in subfigures (e)-(h). The lines indicate the
mean values over 10 random trials, and the shaded regions represent intervals of the sample standard deviations.

Jinseok Chung (ML lab Ordered SG May 4, 2022




Experiments
00000

Take a close look

3x 10! mini-batch SGD
0SGD: g =30
- \ﬁ( .......... 0SGD
‘\—)‘—‘*h—“‘— m Model = PreActResNet18
0
10 N m (n,s,q) = (50000, 64, 64 or 30 or adaptive)
, :L m the initial LR = 0.01 and decay with some policy
10~ R —
0 o m 10 trial each and averaged

0 10 20 30 40 50
epoch

d) CIFAR-10
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Wall-clock time

Table 4: Average wall-clock time (seconds) per epoch.

Experiments
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Data Aug Datasets Model mini-batch SGD  ordered SGD  difference
No Semeion Logistic model 0.15 (0.01) 0.15 (0.01) 0.00
No MNIST Logistic model 7.16 (0.27) 7.32 (0.24) -0.16
No Semeion SVM 0.17 (0.01) 0.17 (0.01) 0.00
No MNIST SVM 8.60 (0.31) 8.72 (0.29) 0.12
No Semeion LeNet 0.18 (0.01) 0.18 (0.01) 0.00
No MNIST LeNet 9.00 (0.34) 9.12 (0.27) 0.12
No KMNIST LeNet 9.23 (0.33) 9.04 (0.55) 0.19
No Fashion-MNIST LeNet 8.56 (0.48) 9.45 (0.31) -0.90
No CIFAR-10  PreActResNetl8  45.55 (0.47)  43.72 (0.93) 1.82
No CIFAR-100 PreActResNet18 46.83 (0.90) 43.95 (1.03) 2.89
No SVHN PreActResNet18 71.95 (1.40) 66.94 (1.67) 5.01
Yes Semeion LeNet 0.28 (0.02) 0.28 (0.02) 0.00
Yes MNIST LeNet 14.44 (054) 1477 (0.41)  -0.32
Yes KMNIST LeNet 12.17 (0.33) 1142 (0.29) 0.75
Yes Fashion-MNIST LeNet 12.23 (0.40) 12.38 (0.37) -0.14
Yes CIFAR-10 PreActResNet18 48.18 (0.58) 46.40 (0.97) 1.78
Yes CIFAR-100 PreActResNet18 47.37 (0.84) 44.74 (0.91) 2.63
Yes SVHN PreActResNet18 72.29 (1.23) 67.95 (1.54) 4.34
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Varying g-size

test error

train loss
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mini-batch SGD
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Conclusion

m This purposely biased gradient estimator perform well not only empirical risk minimization
but also perspective of generalization and computational efficiency

m This variant of SGD also guaranteed to converge
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Thanks for your attention
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Appendix

m proof of Theorem 1

Need to find the function that the gi become an unbiased estimator for subgradient
Taking expectation to gg, it holds that

n n

E[jy] = ;E[Z o] = ;ZPu € Qugi = ;2 P((7) € Qi)

i€Qr i=1 j=1

Define index set A; = {(1),(2), ..., (j — 1)}, denote that given order is measured from
whole n sample losses at current parameter xj, then
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P((j) € Q) = P((j) € g-argmax,cgLt(x))
((4) € S and S contains at most g-1 items in A;)
= P((j) € S)P(S contains at most g-1 items in A;|(j) € S)

= P((j) € S) » P(S contains [ items in A;|(j) € S)

=}
—_

T
=

Then there are () different sets S s.t | S| = s and ("}) different sets S contains

index (j). So P((j) € §) = (%T;)i)'
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And given the condition (j) € S, let S contains [ items in A; which implies s — 1 — 1
items in {(j +1),(j +2),...,(n)}. Then it holds that

)
()

P(S contains [ items in A;|(j) € S) =

Therefore

()L ) | S )
o s=1-1) _ lO l sll::j
P((j) € Qx) = Z (n) 7.

s

s = sl)

So the expectation of ordered gradient is
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1 1o
E[gx] = QZP((J') € Qr)gy) = 52%‘9(]’)
j=1

which desired. Then the proof is done.
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