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Admin

Midterm exam results:

I (overall) mean: 21.1, std: 6.8.

I Your scores are available on PLMS.

I If you want to discuss your result, contact TA by Friday this week.

Midway group presentation signup:

I Groups 7, 10, 13 not done yet. Please sign up here ASAP.
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https://docs.google.com/spreadsheets/d/17yLy0gAO9ncRpUIPP6QEdOf2MgqQqrreWhcb5EMpL9c/edit?usp=sharing


Rates of convergence

So far we have seen rates of convergence for various classes of functions.

I Lipschitz and convex

I Smooth and convex

I Smooth and strongly convex

Questions: Are they optimal? Can we do better?
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First-order oracle model

Is it possible that there exists faster algorithms?

I In order to address this question, we need to consider our model first.

Black-box first-order oracle model of computation:

I At xt it returns the evaluation of f (xt) and rf (xt).

I The algorithm can do anything with these as long as it does not involve f .

I In general a black-box procedure is a mapping from “history” to the next query
point, that it maps (x1, g1, ..., xt , gt) (with gs 2 @f (xs)) to xt+1.
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Complexity of minimizing real-valued functions

We need to analyse a class of functions under some assumptions.

I Lipschitz, smooth, and/or (strongly) convex functions.

For example, consider minimizing the following

min
x2[0,1]d

f (x) ,

and suppose that you can use any algorithm under some oracle model.

Q: How many zero-order oracle calls t before we can guarantee f (xt)� f (x⇤)  ✏?

I It is impossible since given any algorithm we can construct an f where
f (xt)� f (x⇤) > ✏ forever and real numbers are uncountable, which means that to
say anything in oracle model we need assumptions on f .

I One of the simplest assumptions is Lipschitz f ; under this assumption, any
algorithm requires at least ⌦(1/✏d) iterations (e.g., O(1/✏d) by grid search).
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Oracle lower bounds

For any t � 0, xt+1 is in the linear span of g1, ..., gt , i.e., xt+1 2 Span(g1, ..., gt), and
B2(R) = {x 2 Rn : kxk  R}. Then we can prove oracle complexity lower bounds
(Bubeck et al. 2015).

Theorem (non-smooth f )

Let t  n, L,R > 0. There exists a convex and L-Lipschitz function f such that

min
1st

f (xs)� min
x2B2(R)

f (x) �
RL

2(1 +
p
t)

.

I This means that the subgradient method is optimal (under oracle model).

I This does not mean that for a specific function that is Lipschitz and convex there
does not exist a better algorithm than subgradient descent.
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Oracle lower bounds

Theorem (smooth f )

Let t  (n � 1)/2,� > 0. There exists �-smooth convex function f such that

min
1st

f (xs)� f (x⇤) �
3�

32

kx1 � x⇤k2

(t + 1)2
.

Theorem (smooth and strongly-convex f )

Let  > 1. There exists �-smooth and ↵-strongly convex function f : l2 ! R with
 = �/↵ such that for any t � 1 one has

f (xt)� f (x⇤) �
↵

2

 p
� 1

p
+ 1

2(t�1)
!
kx1 � x⇤k2 .
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Momentum to reduce the gap

Under convexity (and other assumptions), we know the rates of convergence is faster
than those previously seen under the oracle model of computations.

Q: Can we accelerate the algorithm?

I Yes we can!

Q: How can we match these bounds? What else do we have?

I Previous iterates {xt , xt�1, xt�2, ...}.

The idea is to use the concept of “momentum”.
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Momentum
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Nesterov’s accelerated gradient descent

Nesterov’s Accelerated Gradient Descent (initialized with x1 = y1):

yt+1 = xt �
1

�
rf (xt) ,

xt+1 = (1� �t)yt+1 + �tyt .

I First performs GD to go from xt to yt+1 and then “slides” a bit further than yt+1

in the direction given by the previous point yt .
I For smooth convex function, this achieves the optimal rate.

Theorem (Nesterov 1983)

Let f be a convex and �-smooth function, then Nesterov’s Accelerated Gradient
Descent satisfies

f (yt)� f (x⇤) 
2�kx1 � x⇤k2

t2
.
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Proof (1/3)
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Proof (2/3)
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Proof (3/3)
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Accelerated proximal gradient method

Consider minimizing a composite function f

min
x

f (x) = g(x) + h(x)

where g is convex and di↵erentiable, and h is convex.

Accelerated proximal gradient method (Beck and Teboulle 2009):

v = xt�1 +
t � 2

t + 1
(xt�1 � xt�2)

xt = prox⌘(v � ⌘rg(v))

for t = 1, 2, 3, ...

I First step t = 1 is just usual proximal gradient update.

I After that, v carries some “momentum” from previous iterations.

I h = 0 gives accelerated gradient method.
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Convergence

Theorem

For f (x) = g(x) + h(x) where g is convex and di↵erentiable, and h is convex,
accelerated proximal gradient method with fixed step size ⌘  1/L satisfies

f (xt)� f (x⇤) 
2kx0 � x⇤k22
⌘(t + 1)2

.

I It achieves the optimal rate of convergence O(1/t2).
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FISTA

L1-regularized least squares or Lasso problem

min
x

1

2
kAx � bk22 + �kxk1 .

Recall that proximal mapping results in the soft-thresholding operation S⌘�(·) applied
to the gradient update (i.e. ISTA).

Applying acceleration gives FISTA (Beck and Teboulle 2009):

v = xt�1 +
t � 2

t + 1
(xt�1 � xt�2) ,

xt = S⌘t�(v � ⌘tA
>(Av � y)) .
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Thank you

Any questions?
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Credits

A lot of material in this course is borrowed or derived from the following:

I Numerical Optimization, Jorge Nocedal and Stephen J. Wright.

I Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

I Convex Optimization, Ryan Tibshirani.

I Optimization for Machine Learning, Martin Jaggi and Nicolas Flammarion.

I Optimization Algorithms, Constantine Caramanis.

I Advanced Machine Learning, Mark Schmidt.
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